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Abstract

In this thesis we describe different parallelization strategies for the Hull-White Single-
Factor Model that prices financial derivatives using the trinomial trees numerical
method. The work is focused on finding the middle ground between the distinct
levels of parallelism and trade-offs such as thread divergence vs. locality of reference,
by applying various optimization techniques and transformations.

First, we will present a sequential solution, used to validate all parallel implemen-
tations later through the project.

Second, we will present a one-option per thread implementation, which will only
deal with outer parallelism.

Third, we will present a multiple options per thread block implementation, aiming
to exploit both levels of parallelism.

Fourth, we will present a fully-flattened implementation, which will put emphasis
on the importance of finding the middle ground between parallelization trade-offs.

Finally, we will present a number of experiments conducted to help explore the
performance impacts by each implementation and optimization previously presented.
This empirical validation will be used to pinpoint the implementations with highest
performance on each different dataset.

Keywords: Option pricing, Trinomial trees, Hull-White Single-Factor Model, Par-
allel programming, Flattening, GPGPU, CUDA, C/C++, Futhark
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1
Introduction

After over 50 years of miniaturization with the pace of Moore’s law[25], transistor
shrinking is reaching its limits1, and the increase in CPU-clock speed has halted
for a while now. Until quantum computers become a reality, or another hardware
technology emerges, computation speed-ups will be achieved by scaling hardware
parallelism—for example, current many-core architectures already support tens of
thousands of hardware threads. In contrast to CPU-frequency scaling, which directly
resulted in increased performance of the unmodified (sequential) program, unlocking
the power of massively-parallel architectures presents significant challenges.

First, it requires the programmer to “think parallel”, for example, to reason about
the parallel nature of recurrences (loops) appearing at various nested levels, and
then to make the parallelism semantics explicit in the program—ideally by means of
parallel-language constructs rather than by unsafe directives such as OpenMP.

Second, while arguably, programs are (more) naturally expressed by combining
parallel constructs at the same level and at various levels in a nest (a.k.a., nested
parallelism), many-core architectures have little support for dynamic parallelism and
morally exploit only flat parallelism. It follows that “someone” has to rewrite the
nested-parallel program into a semantically-equivalent one that uses only flat-parallel
constructs. Ideally, the compiler is the one that performs this translation (automat-
ically), but unfortunately, current programming-model and compiler technology is
far from effectively and reliably supporting real-world applications. It follows that
in many cases, it is the programmer who needs to perform this rewriting by hand
in addition to applying other (compiler) techniques aimed at optimizing locality of

1A prediction by the 2015 International Technology Roadmap for Semiconductors (ITRS)
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Chapter 1. Introduction

reference, thread divergence, etc. In essence, efficiently porting by hand a complex
application to modern hardware often breaks code modularity/maintainability and
requires the programmer to have expert knowledge in compiler analysis. Further-
more, the mainstream parallel APIs are rather low-level, and thus very tedious to
program with (e.g., OpenCL, CUDA are the “parallel assembly” of our time).

Third, to make matters worse, the optimization recipe is often sensitive to the
dataset [1], i.e., optimal performance requires several semantically-equivalent code
versions, each tailored to the particularities of a class of datasets. One potential
driver in the process of code-version generation is the degree of parallelism that is
actually mapped to the hardware. Common wisdom says that outer parallelism is
more beneficial (than inner), so in principle, one should exploit as many levels of outer
parallelism as there are needed to fully utilize the hardware, and should sequentialize
the rest. This strategy also benefits locality of reference, because sequentializing inner
parallelism may enable tiling opportunities. For example:

• The common implementation of dense matrix-matrix multiplication utilizes
only the outer two levels of parallelism and it sequentializes and tiles the (in-
nermost) dot product operation, which results in a compute-bound performance
behaviour. However, if not enough parallelism is available in the outer levels,
then it is necessary to also exploit the dot product parallelism, albeit resulting
in memory-bound behavior.

• In the case of sparse-matrix vector multiplication, the computation can be
carried out in multiple ways: by using row-wise decomposition, column-wise
decomposition, or Checkboard decomposition. The performance of each de-
pends on the distribution and the skewness of the dataset and can lead to
other possible trade-offs, such as locality of reference vs. load balancing (thread
divergence).
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Chapter 1. Introduction

This thesis explores the space of optimization techniques aimed at efficiently port-
ing to GPGPU hardware2 of a difficult-to-parallelize, real-world application from the
financial domain, namely option pricing by means of trinomial trees. This application
is particularly challenging because:

• it uses irregular nested parallelism, which is notoriously difficult to map effi-
ciently to hardware, and

• it exhibits thread-divergence on two (orthogonal) levels, which are difficult to
optimize at the same time, but leaving either one unoptimized may significantly
degrade performance.

An interesting finding of this thesis is that the aforementioned “common wisdom” is
only partly correct. It still holds that sequentializing the inner-parallelism in excess
(to the ones needed to saturate hardware) is the right thing to do when the diver-
gence is randomly distributed — even though this method necessarily leaves one level
of divergence unoptimized. However, when the distribution of divergence is skewed
on both levels, it is better to exploit all parallelism because this allows to optimize
all divergence.

Finally, although all discussed optimization techniques have been implemented man-
ually using CUDA programming, we believe that this thesis may provide useful
insights into how to integrate such code transformations in the repertoire of an op-
timizing compiler.

2General-purpose computing on graphics processing units
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Chapter 1. Introduction

1.1 Problem Statement

To succeed on the market, �nancial organizations strive for higher performance in

the tools they use on daily basis. Such examples are �nancial organizations manag-

ing investment portfolios with large number of assets, or �nancial software providers

developing applications for pricing and risk management3. This has led to an in-

creased interest in HPC4 solutions, e�ciently exploiting hardware parallelism. The

Hull-White Single-Factor Model is one of the �nancial models widely used by �-

nancial organizations to simulate random changes in interest rates in order to price

derivatives. This model can be implemented using trinomial trees [18, pg. 444], [21]

- a generic numerical method known for its higher accuracy and stability compared

to other popular models used for this purpose (e.g. binomial trees). While this

method allows for the precise estimation of option prices, it is extremely expensive

computationally, making it an interesting candidate for parallelization. This thesis

studies several optimization recipes used to implement the Hull-White Single-Factor

Model using trinomial trees, and it also studies how to combine the resulted code

versions into one program that o�ers high performance across all classes of datasets.

The main questions this thesis will try to answer are:

What are the performance trade-o�s for parallelizing the Hull-White

Single-Factor Model on modern massively parallel hardware and which

optimization techniques can yield performance bene�ts?

Which techniques for parallelism optimization work best for the di�er-

ent data classes and how do we combine all parallel versions into one

program that provides high performance on all data sets?

3SimCorp is one such organization trying to investigate and attempt to improve the core pricing
functionalities in its product, Simcorp Dimension, by using various parallelization techniques to
review the implementations of pricing models used by their clients.

4High performance computing
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Chapter 1. Introduction

1.2 Birds-Eye View of our Approach

The thesis will begin with the creation of a proof-of-concept sequential implementa-

tion of the model. This will be done in accordance to description provided in Options,

Futures, and Other Derivatives [18] and will be carried out in C++. Validation will

be done only on single callable European zero-coupon bonds, which is the most basic

data input to work with. The rationale for studying the �nancial background of

the algorithm is that it would enable domain-speci�c optimizations in early design

stages.

The algorithm is concerned with the creation of a trinomial tree, with the shape

shown on Figure 1.1. The tree is built in two passes, referred to as forward and

backward propagation. Forward propagation represents the construction of a term

structure for the underlying asset by progressing one time step at a time. Backward

propagation discounts the asset prices to estimate an option payo� at maturity by

going back through the tree. The price of the derivative is estimated by the value

obtained all the way back at the root.

As long as optimizations are concerned, the most important properties of the con-

structed trees are their widths and heights, which are clearly denoted on Figure 1.1.

Both computation steps have a similar structure: the height dimension represents

a time series, and is implemented as a sequential loop, because the computation of

a certain timestep (level) in the tree depends on the values computed in the previ-

ous timestep. However, the computation along the width axis can be performed in

parallel, i.e., for a certain timestep, all points at the same level in the tree can be

computed with a map operation. It is straightforward to observe that the number of

computations performed for a given option depends strongly on both the width and

the height of the tree corresponding to that option. This thesis will be concerned

with pricing a large number of derivatives (batches) in parallel, as e�ciently as pos-

sible. Batch pricing exhibits two nested levels of parallelism: one across options, and

one on the width dimension of each option tree. Furthermore, this nested parallelism

is irregular, because the heights and widths may vary wildly across options.
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Chapter 1. Introduction

Figure 1.1: Example of a trinomial tree constructed for the Hull-White Single-Factor
Model, illustrating its width and height.

Source: Modi�ed by the authors, based on Options, Futures and Other
Derivatives[18, pg. 699].

The divergence of widths and heights in a dataset presents several important chal-

lenges, but also many optimization opportunities. One of the challenges is to inves-

tigate which of the two nested-levels of application parallelism should be mapped to

hardware - is it only the outer one or both?

Exploiting only the outer parallelism is most suited (i) when the batch is large

enough to fully utilize hardware parallelism and (ii) when all widths and heights are

equal. However, when the heights and widths are highly variant across options, this

approach su�ers from signi�cant thread-divergence overhead (think load imbalance).

It is possible to optimize one of the two divergence factors but not both, for example

by sorting the options by their widths (or heights) in a descending order.

The alternative is to exploit both levels of parallelism. This has the advantage

6
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that it naturally optimizes the width divergence, while the height divergence can

be similarly optimized by sorting. The problem is that e�cient execution requires

that the �attening of the two levels of parallelism is performed on bins of options,

whose summed widths �t the size of the CUDA block. This is because the �attening

transformation introduces many parallel-pre�x sums, map, and scatter operations,

which would be prohibitively-expensive unless they are performed in fast (scratch-

pad) memory, which is available only at CUDA-block level. On the other hand, this

fast memory, is a very scarce resource. Increasing its footprint may result in de-

creasing the occupancy of the hardware. In essence this demonstrates an important

performance trade-o�: optimizing thread divergence may ultimately lead to a decline

in hardware occupancy (or locality), i.e., �there is no free lunch�.

The �rst parallel approach examined in this thesis refers to the version that exploits

only outer parallelism, i.e., it computes a batch of options in parallel, but the pricing

of an option is carried out sequentially inside one thread. The challenges for this

version are caused by the irregularity of the widths and the heights; they speci�cally

refer to (i) ensuring coalesced accesses to global memory, without wasting too much

memory due to padding, and (ii) reducing the thread-divergence overhead by sorting

the options based on their widths or heights. The implementations based on this

approach have been described in detail in chapters 5, 7 and will be referred to as

CUDA-option and Futhark-basicrespectively.

The second parallel approach exploits both levels of parallelism, by packing mul-

tiple options and running them in parallel at CUDA-block level. The number of

options that can be priced per block depends on their constructed tree widths, whose

total sum must not exceed the maximal CUDA block size of 1024. This implies two

things: First, this version is not suitable for pricing options with widths larger than

1024, as those cannot be packed into a CUDA block. Second, divergence across the

width axis is implicitly optimized by bin-packing options at CUDA-block level. The

main di�culty with this implementation is �nding the right heuristic for �attening

the nested parallelism. For example, the classical full-�attening approach [3], while

general, is not applicable because it would generate too many arrays located in fast

memory, which is a sparse resource. Similar to the previous approach, we can use
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Chapter 1. Introduction

coalescing, padding and sorting to improve the performance. Exploiting both inner

and outer parallelism should help discover performance bene�ts on some data sets,

e.g. the ones which present skewed distributions for both widths and heights. This

implementation is covered in detail in chapter 6 and will be referred to asCUDA-

multi .

The last parallel approach explores the e�ects of the classical full �attening [3]. In

contrast to the �rst two versions which have been implemented in CUDA, this version

has been �attened out by hand in Futhark [17], a high-level data-parallel functional

language. This approach is similar to the second one, except that all arrays are

allocated in slow (global) memory rather than in fast (shared) memory. As such,

this version is expected to yield signi�cantly degraded performance in comparison to

the remaining two. There is still a narrow niche for it: when the batch size is small

and some widths are larger than the block size (then the other two approaches are

ine�cient or not applicable). However, the real purpose of this implementation is to

further emphasize the trade-o� between locality of reference and thread divergence:

this version is by far the slowest in a large majority of cases, albeit its thread diver-

gence is optimal. This implementation is described in more details in chapter 7 and

will be referred to asFuthark-�at .

The thesis will also perform a systematic evaluation of the capabilities of all imple-

mentations, by generating and testing them on various datasets that exhibit di�erent

distributions of divergence. This will be done in an attempt to study the performance

trade-o�s on di�erent data and to discover the impact of possible optimization tech-

niques by empirical validation.

As an empirical evaluation, we will test all implementations on 7 distinct datasets

(some of which are random, others skewed). We will show thatCUDA-option domi-

nates the benchmarks on most datasets (except on the skewed ones), reaching up to

~529� speed-up compared to the sequential implementation. The skewed dataset on

the other hand bene�ts most fromCUDA-multi , providing up to ~2� speed-up over

CUDA-option. Furthermore, we will demonstrate that CUDA-multi outperforms

CUDA-option by up to ~13� for �oats and ~11� for doubles when the dataset is

small enough.
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1.3 Motivation and Relation to Related Work

This section brie�y surveys related work with the goal of motivating the practical

and scienti�c contributions of this thesis. A more detailed review can be found in

Chapter 10. A rich body of scienti�c work has studied how to accelerate real-world,

computing-starved applications by porting them to GPGPU hardware. Related so-

lutions span several research directions: (i) building native GPGPU libraries, (ii)

designing data-parallel languages and (iii) devising compiler transformations aimed

at optimizing parallelism.

Many native GPGPU libraries have been already developed to support high-

performance execution of commonly-used algorithms. Such examples are cuBLAS

and cuDNN [27] that port linear-algebra and deep-learning algorithms, respectively,

and a more recent e�ort of Mathworks and Nvidia that is aimed at accelerating

Matlab libraries on Nvidia hardware. Similarly, in the �nancial domain, e�orts

have been aimed at accelerating risk modelling [1] and derivative pricing [29] using

Monte-Carlo simulations. We argue that this thesis is of practical interest because, to

our knowledge, there is no publicly-available GPGPU implementation of (batched)

trinomial pricing.

The design of data-parallel hardware-independent languages have been

a heavily scrutinized research topic. In this sense, many domain-speci�c languages

(DSL) have been developed for accelerating image-processing pipelines [33], iterative

stencils [41], data analytics [42], deep-learning and mesh computations [26, 39], or

speci�c host-language constructs [23, 19, 40]. However, such DSLs do not typically

support nested-composition of parallel constructs, which is the case of trinomial

pricing. Finally, even though several data-parallel languages provide some support

for nested parallelism [3, 17], they are not capable of expressing or deriving (at least)

one of the two e�cient implementations of trinomial pricing, which are the subject

of this thesis.
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Chapter 1. Introduction

Relation with compiler analysis. In this thesis we identify the important

performance trade-o�s for our application and solve them by hand, taking inspiration

from related static and (more) dynamic analyses. As examples of applications of

static analysis, we have optimized spacial locality (i.e., ensured memory coalescing)

by working with arrays in transposed form [29] and we have performed loop fusion [32]

to decrease the number of accesses to global memory. In the implementation of the

code version that computes multiple options in one CUDA block, we have drawn

inspiration from loop distribution [32] and Blelloch's �attening transformation [3].

This was necessary in order to rewrite the algorithmic speci�cation, which exhibits

two-level irregular parallelism, into a composition of �at-parallel constructs. As

example of (more) dynamic analyses, we have used inspector-executor techniques [38,

31] to permute the order of the options in a way that minimizes the thread-divergence

overhead, and we argue that a similar lightweight inspector can be used to derive

a simple predicate that predicts the most suited version of the code for the current

dataset. Finally, we argue that the manually-applied optimizations presented in this

thesis (i) are likely applicable to other programs, and (ii) they provide useful insights

into engineering the compiler infrastructure that would automate the optimization

process.

10
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1.4 Thesis Contributions

Scienti�c contributions: The main scienti�c contributions of this thesis are:

� Research on how the Hull-White Single-Factor Model works in practice and

why it is useful

� Analysis of how the algorithm behind the Hull-White Single-Factor Model can

be �attened to expose more parallelism

� Empirical validation that validates our claims and is supported by tables and

plots

� Static and dynamic inspector/executor analysis of the model for performance

optimization

Practical contributions: The main practical contributions of this thesis are:

� Multiple parallel implementations of the Hull-White Single-Factor Model in

CUDA

� A one-option-per-thread parallel implementation of the Hull-White Single-

Factor Model in Futhark

� A fully-�attened parallel implementation of the Hull-White Single-Factor Model

in Futhark

� A well-structured project on GitHub containing all implementations with build

instructions for each

� Data generator for testing edge cases and relevant data distributions

11



2
Background

This chapter will describe the essential terminology and techniques, laying down a

foundation for the remaining chapters of this thesis. It is divided into four sections.

First, we will cover fundamental �nancial concepts and methods essential for under-

standing the examined �nancial model and algorithm behind it. We will de�ne all

the parameters of the model that we implemented. We will proceed with a brief

description of the CUDA parallel programming model � the main technology used

in the project. Next, we will introduce the semantics and types of parallel operators

we have used throughout the project and �nally we will look into a de�nition of

�attening parallel program transformations.

2.1 Financial Instruments

A derivative is a �nancial instrument that derives its value from and is dependent on

the performance of some other basic underlying entity like asset, index, or interest

rate. The most common underlying instruments include bonds, commodities, curren-

cies, interest rates, market indexes and stocks. Over the last 40 years, various classes

of derivatives like futures and options have grown in importance in �nance being

actively traded on daily basis in the markets all over the world. They signi�cantly

increase market e�ciency and the transfer of risk in the economy. The derivatives

market is much bigger (estimates go from $630 trillion to $1.2 quadrillion) than

the market capitalization of the global stock markets ($73 trillion)1. Derivatives

are mainly used for �nancial risk management as an insurance against rapid price

1http://www.visualcapitalist.com/worlds-money-markets-one-visualization-2017/
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Chapter 2. Background

movements through hedging, increasing exposure to asset price movements through

speculation or taking advantage of di�erences between two or more markets through

arbitrage. [18, pg.1-18] This project is concerned with the valuation of �nancial

derivatives.

2.1.1 Options

This thesis will focus on only one speci�c type of derivatives -options. These are

contracts that give the holder the right to buy or sell an underlying asset at a certain

point in time for a certain price, both speci�ed when purchasing the option. This

is in contrast with other derivatives - forwards and futures, where the holder is

obligated to buy or sell the underlying asset. Another di�erence is where they are

traded. Options and futures are standardized contracts traded on an exchange, while

forwards are traded in the over-the-counter (OTC) market and can be customized

for every transaction. [18, pg.22]

We identify two types of options. Acall option gives the holder the right to buy the

underlying asset by a certain date for a certain price. Aput option gives the holder

the right to sell the underlying asset by a certain date for a certain price. The price in

the contract is calledstrike price and the expiration date is calledmaturity . Options

that can be exercised at any time before maturity are known asAmerican options

and options that can be exercised only on the expiration date itself are known as

European options. One contract usually allows to buy or sell 100 shares. [18, pg.7-8]

Option Example An investor spent 20.000 kr for an option to buy 100 Maersk

shares for 9.600 kr each. The current market price for Maersk stock is 9.440 kr as

of March 15, 2018. If the price does not rise above 9.600 kr by the maturity, the

investor does not exercise the option and loses 20.000 kr. However, if Maersk stock

is priced at 10.000 kr when the option can be exercised, the investor is able to buy

100 shares for the strike price of 9.600 kr and immediately sell them for 10.000 kr.

This will generate a pro�t of 400� 100 = 40:000kr minus the initial contract cost of

20.000 kr.
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Chapter 2. Background

Table 2.1 illustrates an example of exercising this option at di�erent dates. Even

if the stock price rises above the strike price, the net pro�t might still be negative

when the contract price is accounted for.

Table 2.1: Pro�t generated by a call option with strike price of 9.600 kr and contract
price of 100� 200 = 20:000kr.

March 2018 June 2018 Sept. 2018 Dec. 2018
Stock price (kr) 9:440 9:700 10:000 9:800
Share sale pro�t (kr) not exercised 10:000 40:000 20:000
Net pro�t (kr) � 20:000 � 10:000 20:000 0

2.1.2 Bonds and zero interest rates

Bonds are a form of debt that allow companies or governments borrow money from

investors. Interest rate on an investment that starts today and lasts forn years are

called n-year zero-coupon interest rates. All the interest and principal (known also

as face value or par value) payments are realized at the bond maturity. For example,

an investment of $100 with a 5-year zero rate withcontinuous compounding at 5%

p.a. grows to

100� e0:05� 5 = 128:40

In reality, most actively traded bonds pay in addition periodical coupons (interest)

to the holder. [18, pg.80] However, we choose to deal with a most basic bond � a

zero-coupon bond in this project, as coupon-bearing bonds introduce more complex-

ity in valuation of their cash �ows. We decide to do it for the reason of brevity, not

to obstruct the main ideas behind the �nancial model that we implement. More-

over, in this project we deal with risk-free rates, interest rates that can be earned

without assuming any risk, a common practice in derivative pricing. Another as-

sumption we make is that we use continuous compounding frequency (as opposed

to annual or monthly compounding) for measuring interest rates, an in�nitesimally

small compounding interval, that allows us to simplify interest rate calculations. [18,

pg.76-79]
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Chapter 2. Background

2.1.3 Yield Curve

Typically for most pricing models, the probability distributions of interest rates,

bond prices, or other variables at a future point in time are lognormal. However,

this does not provide any information of how interest rates evolve over time. [18, pg.

682]. This can be achieved by building a term structure model, also known as a yield

curve. The term structure model describes the evolution of all zero-coupon interest

rates as a function of maturity. [18, pg.83]

In practice, we do not usually have bonds with maturities equal to exactly 1.5 years,

2 years, 2.5 years, and so on. One approach is to use linear interpolation between

the bond price data before it is used to calculate the zero curve. For example, if it is

known that a 2.3-year bond with a coupon of 6% sells for $108 and a 2.7-year bond

with a coupon of 6.5% sells for $109, it might be assumed that a 2.5-year bond with

a coupon of 6.25% would sell for $108.5. In addition, it is also usually assumed that

the yield curve is horizontal prior to the �rst point and horizontal beyond the last

point. [18, pg.83]

For simplicity, in this thesis we have chosen to use a speci�c yield curve provided

in Example 30.1 and Table 30.2 in [18, pg.706].

2.1.4 Black-Scholes model and formula

The Black-Scholes formula [8], is perhaps the world's most well-known options pricing

model. The model has had a huge in�uence on the way that traders price and hedge

derivatives [18, pg.299-324]. The main �nancial insight of the equation is that it

allows to perfectly hedge an option by buying and selling the underlying asset and

consequently eliminate the risk. This implies that there is only one right price for

the option � computed by the formula. However using the Black-Scholes formula,

assumes several simpli�cations:

� The option must be European and can only be exercised at expiration.

� No dividends are paid out during the life of the option.

� Markets are e�cient (i.e., market movements cannot be predicted).
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Chapter 2. Background

� There are no transaction costs in buying the option.

� The risk-free rate and volatility of the underlying are known and constant.

� The returns on the underlying are normally distributed.

They make this model too simplistic and unrealistic for more precise risk modelling.

2.1.5 Volatility

Volatility, denoted with Greek symbol � , is a standard deviation of the logarithmic

returns around the average of any random variable such as the price of a given security

or a market index over a given time period. [18, pg. 303] The higher the volatility,

the higher the risk of holding the security. It is a variable in option pricing formulas

showing the extent to which the return of the underlying asset will �uctuate between

current moment and the expiry of the option. A common practice in valuation of

options is to use implied volatility, a theoretical value, that is derived directly from

the market price of a derivative observed in a given moment in the market and

input into an option pricing model such as Black-Scholes, that assumes that the

volatility is constant. Volatility, however, as expressed as a percentage coe�cient

within option-pricing formulas, arises, among others, from daily trading activities

and is itself observed to be random and unpredictable. Assets experience periods

of high and low volatility rather than staying constant. Thus, apart from simplistic

Black-Scholes model, there exist di�erent stochastic models simulating the random

changes volatility. In this project, the model, that we investigate, assumes in its

standard form a constant time-independent volatility across time, and thus we are

not concerned with modelling variability of volatility.

2.1.6 Mean Reversion

One-factor short-rate models are one example of models that are dependent on a

single stochastic factor � the short rate2. In short-rate models, on the long run,

2A mathematical model that describes the future evolution of interest rates.
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interest rates appear to be drawn back to their average level over time .[18, pg.

684] This phenomenon is known asmean reversion. When the short rate - typically

denoted as r - is high, mean reversion tends to cause the interest rates to decrease;

vice verse, when r is low, mean reversion tends to cause them to increase. This is

explained visually on �g. 2.1 below.

Figure 2.1: Illustration of mean reversion

Source: Based on Options, Futures and Other Derivatives [18, pg. 684].

2.1.7 Day-count Conventions

Day-count conventions is a method for computing the amount of accrued interest, i.e.

accumulated or received payments or bene�ts over time. It is usually used to asses

the present value when the next coupon payment is less than a full coupon period

away. Typically, bond markets and �nancial instruments have their own day-count

conventions, which vary on the type of instrument, the interest rate type, and the
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Chapter 2. Background

issuance country. The standards were introduced to simplify accounting calculations

and introduce constancy of time period, e.g. day, month, year. In the project, we

chose to use Actual/365 Fixed method assuming the year to be 365 days and the

actual di�erences to be calculated in days, i.e. the smallest interval is one day.

2.1.8 Numerical Methods for Option Pricing

Numerical methods are mathematical tools designed to give approximate but accu-

rate solutions to various numerical problems. Most often used methods are iterative

methods that converge to a satisfactory result with a certain assumed level of approx-

imation by iterating in a �nite number of steps from the initial conditions. In this

project, we deal with interpolation and solutions to continuous-time stochastic dif-

ferential equations describing �nancial phenomena like interest rate. As we can only

represent problems with �nite amount of data, we need to discretize these problems

by �nding values in a �nite number of points in a problem domain. We use numer-

ical methods to solve problems that do not have an analytical solution, e.g. some

di�erential equations cannot be solved exactly. While using numerical methods, it is

important to address the numerical stability of the used algorithm to estimate and

control round-o� errors arising from the use of �oating point arithmetic.

Binomial Tree A most basic numerical method for pricing options involves

the construction of trees or lattices. [18, pg. 253] A binomial tree (see �g. 2.2) is a

numerical method, which allows to graphically represent the possible values that an

option may take at di�erent nodes or time periods. The value of the option depends

on the underlying stock or bond, and computing values on the nodes is based on the

probability that the price of the underlying asset will decrease or increase. The main

advantage of binomial trees is that they are analytically tractable. This means that

price valuation for a derivative can be performed on each node for every time step.

This gives more �exibility and allows pricing of path-dependent derivatives, such as

exotic options, having more complex cash�ows. While the binomial model presented

on �g. 2.2 is unrealistically simple, the life of an option may in practice span for 30
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or more time steps, making it possible to implicitly consider about230, or approx. 1

billion possible stock price paths. [18, pg. 268]

Figure 2.2: Illustration of a binomial tree

Source: Based on Options, Futures and Other Derivatives [18, pg. 254].

Trinomial Tree The trinomial option pricing model (an example is shown on

�g. 2.3) is an alternative numerical method for constructing trees, with the di�erence

that it consolidates another possible value per single time period. This makes the

trinomial model even more relevant to real life situations, as it ensures the possibility

that the value of the underlying asset may not change over a time period (taking the

mid path on the tree). Calculations for a trinomial tree are analogous to those for a

binomial tree.
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Figure 2.3: Illustration of a trinomial tree

Source: Based on Options, Futures and Other Derivatives [18, pg. 444].

In this project, we use trinomial tree method as a numerical method for option

pricing. However, there exist other methods that might be more suitable and per-

forming better under certain speci�c conditions, that might be mathemtically and

computationally more complex.

Monte Carlo simulations samples di�erent paths to obtain the expected

payo� of the asset in a risk-neutral world and are then discounted at this risk-free

rate. Monte Carlo Methods are particularly useful in the valuation of options with

multiple sources of uncertainty (multiple dimensions) They are suitable for pricing

instruments with complicated features, when the payo� depends on the path fol-

lowed by the underlying variables, as this makes them di�cult to value through

a straightforward Black�Scholes analytical model or tree-based computation. Un-

fortunately, the method is computationally intensive and might be too slow to be

competitive over an analytical solution or other numerical techniques like trees. On
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the other hand, this constraint is less of concern in current computing environment

with abundant and e�cient compute capabilities. Another issue is that Monte Carlo

procedures have to be adjusted to handle situations with early exercise opportunities,

what increases their implementation complexity. [18, pg. 448]

Finite di�erence methods (FDM) value a derivative by solving the di�er-

ential equation that the derivative satis�es. The di�erential equations are converted

into sets of di�erence equations and are solved iteratively. This is similar to the

trinomial trees method, since the computations also work back from the end of the

derivative maturity to the beginning. In fact, tree based methods, if suitably param-

eterized, are a special case of the explicit �nite di�erence method. [18, pg.455 - 466]

These type of methods can solve derivative pricing problems that have, in general,

the same level of complexity as those problems solved by tree approaches, but, given

their relative complexity, are usually employed only when other approaches are in-

appropriate. Furthermore, like tree-based methods, they are limited in terms of the

number of underlying variables, i.e. multiple dimensions, they can handle.
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2.2 CUDA Background

CUDA3 is a parallel computing platform and a programming model based on C/C++,

developed by Nvidia with the purpose to simplify and make GPGPU programming

more accessible. It allows developers to incorporate various CUDA-speci�c keywords

(such as e.g.__device__ , __host__ , cudaMemCpy, blockIdxand more.) into their

programs, in order to express the parallelism and indicate to the compiler the code

that should be run on the GPU.

2.2.1 Process Flow

CUDA allows the compiler to distinguish between serial and parallel code by using

the __host__ and __device__ function modi�ers respectively. While the �rst will

be run as any other normal C/C++ program on the CPU, the latter will be run on

the GPU. Device functions can be called insidekernel functions that are de�ned

with the __global__ keyword and when called, are executedN times in parallel by

N di�erent CUDA threads. Since GPUs operate on their own memory, it is necessary

that the input to the kernels is copied to the GPU memory beforehand. Furthermore,

the results have to be copied back and both of these operations can be done with

the use of the built-in cudaMemCpy() function. Note that copying data back and

forth from the GPU takes a rather high amount of time, hence GPU computing is

not always suitable for all applications. It is often the case that the input is too

small and it makes more sense to run an algorithm sequentially, as that will result

in a shorter runtime. Return or temporary arrays must also be pre-allocated on the

GPU beforehand, which is done by thecudaMalloc() function.

Each parallel invocation of a kernel creates a CUDAblock of multiple threads

(currently up to 1024 threads). Ablock executes only on one multiprocessor, which

allows (i) synchronization (by means of barriers) across allthreads in the block and

(ii) the use of shared memory, allowing threads within a block to communicate. On

a larger scale, a set ofblocksis called agrid . The number of blocks and threads can

3Additional information about CUDA can be found on the Nvidia o�cial documentation pages:
https://docs.nvidia.com/cuda/
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be speci�ed by the programmer. A general overview of this structure is illustrated

on �g. 2.4.

Figure 2.4: Grid of Thread Blocks

Source:https://docs.nvidia.com/cuda/cuda-c-programming-guide/

CUDA automatically allocates thread blocksand resources to theStreaming Mul-

tiprocessors(SMs). SMs are the part of the GPU which runs the provided CUDA

kernel and they consist of several sub-components:Memory caches(e.g. shared

memory, constant memory, and more); thousands ofregisters4, which can be parti-

4Register memoryis memory allocated inside a singlethread and is only accessible by it through
its lifespan. This is the fastest memory available in the CUDA memory model.
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tioned among the threads for execution; awarp scheduler5 and execution coresfor

both integer and �oating-point operations. Fig. 2.5 illustrates the CUDA memory

model.

Blocksand threadscan be indexed inside the kernel in order to utilize the workload

distribution among threads. CUDA also allows the use ofshared memory between

all threads within a block with the use of the__shared__ keyword, used when

declaring arrays. In contrast toglobal memory , which is accessible from all threads,

shared memoryis much faster to operate with, due to its locality, as well as its

di�erent technology6.

The parallel access to data can often lead todata hazards, such asRAW (read after

write), WAR (write after read) or WAW (write after write). While good software

design can often help withdata hazards(i.e. as it will be seen in section 5.1), it is

often insu�cient. In those situations, the __syncthreads() function can be called,

which awaits all threadswithin a block and prevents incorrect memory reads/writes.

Note that this slows down the overall runtime, thus it is up to the programmer to

ensure it is only used when necessary.

5When passed to theSM, thread blocksare split into warps (currently with a maximum size of
32 threads). All the threads in a warp execute concurrently on the resources of theSM.

6Global memoryuses DRAM, while Shared memoryuses SRAM, which tends to be overclocked,
hence faster.
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Figure 2.5: CUDA memory model

Source: Based on Nvidia CUDA Programming Guide 1.1, 2007

2.2.2 Memory Coalescing

One of the most signi�cant hardware optimizations that CUDA provides is memory

coalescing. It can be achieved when the threads in a warp access (when executing

one read/write SIMD instruction) consecutive memory locations, making the access

to be performed in one memory transaction. The consequences of not using memory

coalescing can be as much as a warp di�erent memory transaction to read/write this

data. It is therefore important that the code is designed to take advantage of this
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optimization. As it can be seen on �g. 2.6, an array can be restructured (transposed)

allowing to take advantage of the order of elements. In the course of this project we

have applied both coalesced and non-coalesced accesses and it has been interesting

to observe the performance bene�ts it can lead to, as it will be shown in chapter 9.

Figure 2.6: Memory coalescing

Source: Based on Real-Time FFT Computation Using GPGPU for OFDM-Based
Systems [22]
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2.3 Semantics and types of parallel operations

To understand the �attening transformations applied and derive implementations

exploiting di�erent levels of �attening, it is necessary to �rst understand the higher-

order functions we have used. Note that the functions described in this section can

be redundant in imperative languages, such as CUDA. Despite that, parts of the

work of this thesis is done in Futhark, hence these functions will be met throughout

this report. For simplicity, these functions have been extracted from the Futhark

language. Therefore this section will also serve as a �Futhark background�. Note

that for all functions below, [n]� denotes an array ofn elements of type� and e

denotes the neutral element.

2.3.1 Zip and unzip

Zip and unzip are used when working with tuples of data, as the �rst creates a tuple

of values, while the latter can be used to extract the values of it. These functions are

redundant in CUDA, however we have used them in the Futhark implementations.

The signature ofzip is:

zip : [n]� ! [n]� ! [n](�; � )

zip [x1; x2; :::xn ] [y1; y2; :::yn ] = [( x1; y1); (x2; y2):::; (xn ; yn )]

Conversely, the signature ofunzip is:

unzip : [n](�; � ) ! ([n]�; [n]� )

unzip [(x1; y1); (x2; y2):::; (xn ; yn )] = ([ x1; x2; :::xn ]; [y1; y2; :::yn ])

2.3.2 Map

A map applies a given function to each element of a list. It therefore takes a function

and an array as input. It has the following signature:

map : (� ! � ) ! [n]� ! [n]�

map f [x1; x2; :::; xn ] = [ f (x1); f (x2); :::; f (xn )]
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We have additionally usedmap2, map3 and similar mapvariations in Futhark, which

have di�erent signatures than the ones above, where the map is applied to multiple

arrays (map2 for 2, map3 for 3, etc.) of the same size. In these cases, the function

f takes multiple parameters, one from each array. For simplicity, we have used only

map in our pseudo-code, even though the maps may take multiple arrays as input.

In these cases, the number of arguments in the lambda function indicate the number

of input arrays if unclear.

2.3.3 Reduce

A reduceuses a given binary-associative operator, a neutral element, and an array,

and it recursively accumulates the array elements with the combining operator, start-

ing with the neutral element, building up the return value. Reduceis quite similar

to a scan(discussed in the next subsection), with the only di�erence that it does not

keep intermediate values. The function has the following signature:

reduce : (� ! � ! � ) ! � ! [n]� ! �

reduce � e [x1; x2; :::; xn ] = e � x1 � x2 � ::: � xn

We have created an alias forreduce, namedreducePlus, which corresponds toreduce(+) 0

where the combining operator is+ and 0 is the neutral element.

2.3.4 Scan

An inclusive scan(or just scan) uses a given binary-associative operator, a neutral

element, and an array and recursively accumulates the array elements with the com-

bining operator, starting with the neutral element, building up the return values.

Note that (i) scan returns an array containing all intermediate values, di�erently

from reduceand (ii) the neutral element is not returned together with the interme-

diate values. Another variation ofscan is exclusive scan/ scanExc, which shifts the

return array of a typical scan to the left with one element, including the neutral

element in the beginning and excluding the last element (hence the name exclusive).
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Scan (inclusive) has the following signature:

scan : (� ! � ! � ) ! � ! [n]� ! [n]�

scan � e [x1; x2; :::; xn ] = [ e � x1; :::; e� x1 � ::: � xn ]

while an exclusive scan has the signature:

scanExc : (� ! � ! � ) ! � ! [n]� ! [n]�

scanExc � e [x1; x2; :::; xn ] = [ e; e� x1; :::; e� x1 � ::: � xn� 1]

Scanhas been one of the most used functions in this project. To reduce redundancy in

the pseudo-code of the following chapters, we have created an alias for it -scanPlus,

which corresponds toscan (+) 0 where the combining operator is+ and 0 is the

neutral element.

2.3.5 Segmented scan

A two-dimensional irregular array � meaning the rows (segments) do not have the

same lengths � can be represented by a �at array of values of primitive types together

with a ��ag� array, which denotes where each row (segment) starts�in essence a

true or 1 �ag value denotes the start of a new segment and afalse or 0 value

denotes that the current element is within a segment but not the �rst element of the

segment. Asegmented scan/ sgmScanoperator semantically performs in parallel an

inclusive scan on each of the segments of the array. (Note that exclusive scan can

also be segmented, but it will not be introduced, as it was not used in this thesis).

Segmented scanhas a type similar toscan, except that it also receives the �ag array

as parameter; moreover it is also straightforwardly implemented by means ofscan.
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Its type and implementation are presented below:

sgmScan : (� ! � ! � ) ! � ! [n]bool ! [n]� ! [n]�

sgmScan� e 
ags vals =

let (_ ; vals0) = scan ( (f 1; v1) ( f 2; v2) !

if f 2 then (true ; v2) else (f 1 || f 2; v1 � v2)

) ( false ; e) (zip f lags vals)

in vals0

Similar to scanPlus and reducePlus, we have also created an alias forsgmScan-

sgmScanPlus, which corresponds tosgmScan(+) 0 where the combining operator is

+ and 0 is the neutral element.

2.3.6 Replicate

Replicate takes an integern and a valuem and creates an array of lengthn whose

elements have valuem. The function signature is:

replicate : (n : int ) ! � ! [n]�

replicate n m = [ m; :::; m]

2.3.7 Scatter

Scatter is used for bulk in-place updates with multiple values and takes an array

to write to, an array of indexes showing which elements of the �rst arrays should

be updated, and an array of values, i.e. the updates. Note that CUDA supports

in-place updates, hence this operation is not needed. The signature is shown below:

scatter : [n]� ! [m]� ! [m]� ! [n]�

2.3.8 Iota

The iota function is Futhark-speci�c and is used to create an array of index values,

used to map indexes over elements. It takes an integer as input. The signature is
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shown below:

iota : (n : int ) ! [n]int

iota n = [0; 1:::; n � 1]

2.3.9 Last

Last takes an array as input and returns the last element of it. The signature is:

last : [n]� ! �

last [x1; x2; :::xn ] = xn

2.3.10 Length

Length takes an array as input and returns its length/size. The signature is:

length : [n]� ! int

length [x1; x2; :::xn ] = n
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2.4 Flattening Background

As brie�y mentioned in the Introduction, complex applications are often composed of

multiple nested levels of operations. This means that operations are often performed

on nested arrays such asa = [[1; 2]; [3; 4; 5]; [6; 7; 8; 9]]. Suppose that we want to

apply the function f (x) = x + 1 to each element in the array (note that iteration

over arrays is done via a map). This cannot be done directly, asx is of type �array

of integers�. Instead, we can iterate over all nested arrays (with the use of another

map) and apply the function to each sub-array as follows:map (nx ! map f (x)) a.

In order to e�ectively utilize massively parallel hardware, it is necessary that nested

higher-order functions (such asmap, scan, reduce, etc.) are �attened, so that they can

operate on �at arrays. Their transformation can be done through certain �attening

techniques such as the ones described in this section. Flattening an array itself

is straightforward, as the example above becomes
at _ a = [1; 2; 3; 4; 5; 6; 7; 8; 9].

Albeit, the �attened representation of an array does not contain any indication of

how many nested arrays existed before, nor on their separation. Hence it is often

necessary to introduce additional arrays such asshapeand �ags. In our example,

shape_ a = [2; 3; 4], contains the length of each sub-array ofa. Denoting the length

of shape_aby m and the length of �at_a by n, we can create the�ag array by:

� using an exclusive scan to compute the indices where atrue or 1 value should

be placed in the �ag array, i.e.,inds = scanExc(+) 0 shape_ a = [0; 2; 5],

� updating an array of false values with true at the computed indices, i.e.,


ags_ a = scatter (replicate n false ) inds (replicate m true ) which results

in [1; 0; 1; 0; 0; 1; 0; 0; 0].

The �ag array can be later used to �atten nested operations, for example in the

case of segmented scan. Note that only the �attening transformations that have been

used in this project are described, even though many more transformations can be

devised. Note also that these transformations are only guidelines and they can be

simpli�ed in practice, as some of the steps may be redundant in various combinations

of operations.
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2.4.1 Nested Map in a Map

A nested map inside a map is one of the simplest �attening transformations that

can be performed. The procedure is as simple as applying the nested map on the

�attened array, meaning that:

map (x ! map f (x)) a � map (x ! f (x)) 
at _ a

Applying the map to the �at array shown as an example in the beginning of this

section, we getmap (x ! x + 1) [1; 2; 3; 4; 5; 6; 7; 8; 9] = [2; 3; 4; 5; 6; 7; 8; 9; 10]

2.4.2 Nested Scan in a Map

Flattening scan is also done in a single step, as it is replaced with asegmented scan,

taking an additional �ags array. In general, the �attening transformation of a nested

scan can be described as (wheree is the neutral element):

map (x ! scan � e x) a � sgmScan� e 
ags_ a 
at _ a

Using the arraya mentioned previously as an example,(+) as a cumulative operator

and 0 as a neutral element, we can apply

sgmScan(+) 0 [1 ; 0; 1; 0; 0; 1; 0; 0; 0] [1; 2; 3; 4; 5; 6; 7; 8; 9] = [1; 3; 3; 7; 12; 6; 13; 21; 30]

2.4.3 Nested Replicate in a Map

As previously mentioned, replicate takes as inputs an integer and a value of some

arbitrary type � . For simplicity (only in this section), we will name themn and x,

wheren is the number of timesx should be replicated. The �attening of areplicate

nested inside amap becomes a combination of scans and scatters. In the following

we assume the �at arraya is of type [q](int ; � ):

map (n(n; x) ! replicate n x) a � sgmScanInc(+) 0 
ags vals

where:

(shape; xs) = unzip a

inds = scanExc(+) 0 shape


atlen = ( last inds) + ( last shape)


ags = scatter (replicate 
atlen false ) inds (replicate n true )
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vals = scatter (replicate 
atlen false )) inds xs

The above re-write rule says that a replicate operation nested in a map will gener-

ate a �at array (by means of thesgmScanoperation), whose structure is described by

the shape(and �ags) arrays. Since the re-write rule is very dry, we work an example

by hand to provide more insight.

Suppose that we have amap ((n; x) ! replicate n x) [(1; 7); (3; 8); (2; 9)], that is,

to replicate 7 one time,8 three times, and9 two times through the iterations of the

map. We start by deriving

(shape; xs) = unzip([(1; 7); (3; 8); (2; 9)]) = ([1 ; 3; 2]; [7; 8; 9])

inds = scanExc(+) 0 [1 ; 3; 2] = [0; 1; 4]


atlen = ( last [0; 1; 4]) + ( last [1; 3; 2]) = 4 + 2 = 6


ags = scatter [0; 0; 0; 0; 0; 0] [0; 1; 4] [1; 1; 1] = [1; 1; 0; 0; 1; 0]

vals = scatter [0; 0; 0; 0; 0; 0] [0; 1; 4] [7; 8; 9] = [7; 8; 0; 0; 9; 0]

and �nally

sgmReplicate= sgmScan(+) 0 [1 ; 1; 0; 0; 1; 0] [7; 8; 0; 0; 9; 0] = [7; 8; 8; 8; 9; 9]

2.4.4 Nested Reduce inside a Map

We cover now the case in which a reduce is nested inside a map:

map (nx ! reduce � e x) a

wherea is a two-dimensional irregular array, represented by (1) array�at_a , which

holds the �attened values, and by (2) arraysshape_aand �at_a which encode the

row structure of a, as explained before.

The result of �attening is a �at array containing as many elements as rows ina

(i.e., length of shape_a), in which each element of the result is obtained by reduc-

ing the corresponding segment with the given operator and neutral element, a.k.a.

segmented reduce. The re-write rule is given below (and it assumes no empty rows):

map (nx ! reduce � e x) a � map (ni ! vals[i � 1]) shape_ scanned

where

shape_ scanned = scan � e shape_ a
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vals = sgmScan(� ) e 
ags_ a 
at _ a

Suppose that we simplify the example in the beginning of this section, such that

� = + , e = 0, a = [[1; 2]; [3; 4; 5]]; 
at _ a = [1; 2; 3; 4; 5]; shape_ a = [2; 3], and


ags_ a = [1; 0; 1; 0; 0]. Then the segmented reduce is obtained as follows:

shape_ scanned = scan(+) 0 shape_ a = [2; 5]

vals = sgmScan(+) 0 [1 ; 0; 1; 0; 0] [1; 2; 3; 4; 5] = [1; 3; 3; 7; 12]

and �nally

sgmReduce= map (ni ! vals[i � 1]) shape_ scanned = [3; 12]

Summary

This chapter has provided a brief introduction to the necessary concepts mentioned

in the consequent chapters. It has covered �nancial topics such as options, volatility,

numerical methods, and more, all needed in the implementations. Following was an

introduction to the basics needed for understanding terminology and techniques in

CUDA, which have been used throughout this thesis. Next, this chapter has covered

the parallel operations used in the thesis, immediately followed by the �attening

background needed for applying transformations in order to exploit thread divergence

and experiment with di�erent levels of nested parallelism.
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3
Hull-White Single-Factor Model

The following chapter will study the Hull-White Single-Factor Model to understand

the algorithm behind it and prepare a strategy for a parallel implementation. It will

�rst introduce a general overview of how a trinomial tree is being constructed, and

later show how prices are being discounted from it.

3.1 Hull-White Trinomial Tree

In this project, we implement the trinomial tree numerical method to discretize the

Hull-White model. In contrast to the standard trinomial tree, the tree used in the

Hull-White model incorporates the mean-reversion of the interest rate, by using a

width limit and modi�ed branching methods for the tree. Standard branching (see

�g. 3.1a) remains the same throughout the tree. At the bottom of the tree, where

interest rates are very low, the �up one/straight along/down one� (see �g. 3.1b)

branching is used. At the top of the tree, where interest rates are very high, the

�straight along/down one/down two� branching is used (see �g. 3.1c).

We observe that this pruning characteristic allows us to asses the size of the tree

upfront and use this knowledge to enable more speci�c implementation optimiza-

tions, in particular how to map the tree to the parallel device thread and memory

architecture. Otherwise, the tree could grow in�nitely in its width, making it im-

possible to map to limited parallel architecture memory resources and invalidating

certain parallel implementations.
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(a) Standard branching (b) Bottom branching (c) Top branching

Figure 3.1: Alternative branching methods for a trinomial tree.

Source: Based on Options, Futures and Other Derivatives[18, pg. 698].

3.2 Overview

Pricing a single option using Hull-White short-rate1 single-factor trinomial tree model

enables the term structure of interest rates at any given time to be obtained from

the value of the short rater at that time and the risk-neutral process forr. This

shows that, once the process forr has been de�ned, everything about the initial zero

curve and its evolution through time can be determined[18, pg. 683].

The model consists of two steps. The �rst (forward propagation along the tree)

is the construction of the trinomial tree in order to obtain a list of alpha values for

each time step. These alphas are later used in the second step (backward propaga-

tion along the tree) to �t the option/bond prices and obtain the option value back

at the root node of the tree. The input fed to the algorithm consists of an option,

which includes its strike price, maturity, time step length, mean-reversion rate2 and

volatility 3. The output is the estimated price of the option/bond. The two steps can

be generalized as follows:

1The short rate, r, at time t is the rate that applies to an in�nitesimally short period of time at
time t [18, pg. 682]

2denoted asa - determines the relative volatilities of long and short rates[20, pg.9]
3denoted as� - determines the overall level of volatility [20, pg. 9]
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1. Forward propagation step: Construct a term structure for the underlying

asset by progressing one time step at a time. Determine neutral risk rate for

a new time step using estimated yield curve data and estimated current asset

values.

2. Backward propagation step: Discount the asset prices to estimate option

payo� at maturity going from the leaves of the tree to its root.

Algorithm 1 shows a high-level overview of a function implementing this procedure

for pricing one option. The input of the algorithm is an option and a yield curve

(used for the computation of alphas) and the output is the estimated price of the

option. The function consists primarily of two sequential (convergence) loops of

count tree height, which contain inner parallel operators of count tree width, where

tree height and width are speci�c to each option (and thus vary across options). The

tree height is dependent on the number of time steps, i.e., maturity of the underlying

bond and precision. The tree width is dependent on the number of terms and input

parameters.

Di�erent option/bond maturities (leading to di�erent tree heights) and di�erent

level of pricing accuracy (number of simulated time steps leading to di�erent tree

dimensions) make the choice of an e�ective parallelization strategy di�cult. It is

necessary to have a deep understanding of the algorithm itself to achieve maximum

parallelization e�ciency. The book by John Hull[18] provides a solid background on

the topic, describing the mechanics of interest rates, markets, as well as application

of binomial trees and eventually trinomial trees to option pricing. Chapter 30 further

narrows the topic of using trinomial trees as a numerical method and introduces a

step by step walk-through of applying the algorithm on a basic example. While some

of the calculation details are omitted in the book, the authors provide references to

previous articles[20][21], where they provide a thorough explanation backed with

more detailed examples.
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It is important to mention that the construction of a trinomial tree is a discrete-

time, lattice-based4 numerical method, but the example in the book is simpli�ed

by cutting the tree at a certain height and using analytic formulas to produce a

concrete result for a speci�c �nancial instrument - a zero-coupon bond maturing at

time (m + 1) � 4 t [18, pg. 704]. These formulas have been found and proven to be

e�ective by the authors of the book and the articles. While this simpli�cation gives

more precise results in the above mentioned speci�c case, constructing the entire tree

and using all of the time steps provides a foundation for pricing other options with

more sophisticated cash�ows. All the implementations of this thesis will be focused

on the described numerical approach.

The following sub-chapters are focused primarily on the intuition behind the al-

gorithm, with the sole purpose to provide the reader with a general overview for

it. For this reason, many of the details and formulas of calculating speci�c values

are omitted, however they are thoroughly described in the book and the articles by

Hull and White. As the model is best understood visually, we have included some

of the supplementary images from the Hull and White book in order to support our

algorithm explanation.

4A model that takes into account expected changes in various parameters e.g. interest rate over
the duration of the option
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Algorithm 1: High-level overview of pricing a single option using Hull-White

Single-Factor Model
Input : Option, YieldCurve

Output: Price approximation

1

2 alphas[0] = Compute yield at initial interest rate

3 Qs[0][width=2] = 1 /* Initialize the root node to 1$ */

4

5 /* Forward propagation (convergence) loop */

6 for i = 0 to height do

7 /* Compute Qs at the next time step */

8 for j = 0 to width do

9 Qs[i+ 1][j] = Compute Q from Qs[i] and alphas[i]

10 end

11 Compute alphas[i+ 1] from Qs[i]

12 end

13

14 /* Initialize prices at the last time step to 100$ */

15 Prices[height� 1] = 100

16

17 /* Backward propagation (convergence) loop */

18 for i = height� 1 to 0 do

19 /* Compute prices at the previous time step */

20 for j = 0 to width do

21 Prices[i][j] = Compute price from Prices[i+ 1] using alphas[i]

22 end

23 end

24

25 /* Return price at the root node */

26 return Prices[0][width=2]
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3.3 Forward Propagation

The forward propagation by itself consists of two stages. Each of them computes dif-

ferent values on the same tree. While the tree height can grow inde�nitely, depending

on the number of time steps, the width of the tree is limited by mean-reversion (as

reasoned for in chapter 2), by determining its max. width (or as we refer to it for

simplicity - width).

Indexing Since the tree is 2-dimensional, locating and computing values on

individual nodes boils down to locating them by index �rst. Hence, we introduce

the two indexes -i and j, used to indicate the tree height and its width respectively.

To describe the meaning ofi and j visually, we can use �g. 3.2, where nodes along

the height - A, C, G - can be indexed as i = 0, 1, 2. Indexing across the width is

di�erent, as we intuitively denote the core of the tree - nodes A, C, G - withj = 0.

Going down along the three decreases the value ofj , while going up increases it.

This means that nodes D,H are located onj = � 1, nodes B,F are located onj = 1

and so on. We denote the highest node across the width asj max and j min as the

lowest. Note that j min = � j max due to the symmetry of the tree, making it possible

to omit j min occurrences in our implementations by replacing them with� j max . On

�g. 3.2 nodes E and I are at the top and at the bottom of the tree width, hence their

j indexes are equal toj max and j min respectively. The index values in this example

are j max = 2 and j min = � 2. Note that our code cannot always be aligned with our

intuition and indexes cannot be negative in our programs. Hence we can shift the

indexing betweenj min and j max and count from0 to 2� j max + 1 instead, making the

root node to be located at indexj max . Despite that, we have usedj min and j max as

width boundaries throughout this report, as they are easier to comprehend.

Stage 1 aims to construct a tree for a variableR� that is initially 0 and

follows the Ornstein�Uhlenbeck stochastic5 process6 dR� = � aR� dt + �dz which is

5With a random probability distribution or pattern that may be analyzed statistically but may
not be predicted precisely.

6Tends to drift towards its long-term mean (also called mean-reverting).
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symmetrical about R� = 0[18, pg.698-699]. Together withR� , pu, pm and pd are

calculated to match the respective up, mid and down probabilities that match the

expected change and variance of the change in R over the next interval4 t. Since

the width of the tree is limited betweenj min and j max , some of the branching is

calculated di�erently, thus pu, pm and pd depend on the node position. Naturally

the tree construction happens iteratively, node by node, starting from the root. In

the end of the stage, this �rst tree will always have a symmetrical shape7 similar8 to

�g.3.2.

Figure 3.2: Example of the trinomial tree forR� .

Source: Modi�ed by the authors, based on Options, Futures and Other
Derivatives[18, pg. 699].

7Trinomial trees are recombining, meaning that at any time, an up move followed by a down
move has exactly the same e�ect on the price as a down move followed by an up move.

8Note that the width and height of the tree may di�er based on the number of time steps and
the maturity of the �nancial instrument
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An important property of this tree include �rst of all that it is self-recombining,

causing it to be symmetric. The probabilities on the lower part of the tree will be the

negative of the probabilities on the upper part of the tree, e.g. probability that node

A reaches node D is minus the probability of node A reaching node B. Furthermore,

also due to symmetry, all unique probabilities can be stored in an array of size the

width of the tree, because e.g. the probability of node A reaching node B is the same

as the probability of node C reaching node F and so on. Probabilities are used both

in stage 2 of the forward propagation, but also in the backward propagation, thus

it is necessary to contain them to the end, if they are to be stored. Last but not

least, the way probabilities are calculated is di�erent onj min or j max , because of the

di�erence in branching. This can be seen on �g. 3.2 where nodes E and I branch out

di�erently in comparison to all other nodes.

Stage 2 In this stage, the rates at each node in the tree at each time step are

shifted up by an amount -� , chosen so that the revised tree correctly prices discount

bonds [21, pg. 6]. This is done by de�ningQi;j as the present value of a security

that pays o� $1 if node (i, j) is reached and 0 otherwise. The starting point is to set

Q0;0 = 0 and � 0 to the interest rate at time 4 t. Qs at the next time step are then

calculated by using the generalized formula [18, pg.705]:
Qm+1 ;j =

X

k

Qm;k q(k; j )exp[� (� m + k4 r )4 t]

Assuming that we start at stepm, to calculate theQs on stepm+1, we need to have

the � on stepm. Furthermore, once theQs on stepm +1 have been calculated, they

are used to also �nd the� on m + 1 later. This leads to conclude that� s and Qs

are interrelated on each time step.� s are calculated using the generalized formula

[18, pg.703]:

� m =
P nm

j = � nm
Qm;j e� j 4 r 4 t � ln Pm+1

4 t
At the end of this stage, the new tree will have changed visually. For example, the

tree from �g. 3.2 can be re-shaped as shown on �g. 3.3.
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Figure 3.3: Example of the trinomial tree forR.

Source: Options, futures and other derivatives �g. 30.9 [18, pg. 702]

An important observation here is that the only outcome of this tree that is used in

the backward propagation is the array of� s. Qs are in this case intermediary values,

used to compute the� on each step and for this reason, theQ values do not need to

be stored any longer once all� s have been computed.

3.4 Backward Propagation

The backward propagation starts with the previously constructed tree during the

forward propagation step, in particular with array of� s. At each time-step the option

payo� is computed as the discounted value of the expected value at the next step

[21, pg. 6]. From this it follows that the nodes at time stepi (e.g. the nodes without

assigned letters in �gures 3.2 and 3.3 above) are the starting point of the backward

propagation. Their values are set to 100$ and are used to compute the previous set of

nodes (at time stepi � 1). That is done by discounting bond price values up until the

exercise of the option. At the option expiration time step, we decide if we exercise

the option or let it expire worthless. To achieve that, we calculate the di�erence

between bond price and the strike price. The positive values mean exercise, while
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non-positive mean expiry worthless and are set to0. We discount the option prices

further down to the root of the tree to get the approximation of the option price

on the valuation day. This is the output of the algorithm. We use the array of� s

computed during the forward propagation through this procedure. It is important

to note that determining the option price depends on the type of option (whether it

is a put or a call option).

Summary

This chapter has provided a detailed overview of the Hull-White Single-Factor Model,

in particular its two-stage procedure fo propagating along a trinomial tree. It will be

used in the following chapter, which will introduce the challenges of implementing a

sequential version of the algorithm in C++.
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Sequential Implementation

In order to better understand the algorithm, we have started with a basic sequential

implementation of it in C++. While this step could be done in any language, we

have chosen to work with C++, as it would allow us to re-use pieces of code for

the parallel CUDA implementations, described further in this report. Running this

version with a large number of options will likely result in a signi�cant amount of

computation time. However, the purpose of this implementation is rather a proof of

concept that the algorithm produces correct approximations, as well as to provide a

set of results, which can be used to test against with the other implementations.

The algorithm described in the book is used to price one option at a time and

the natural way to start a sequential implementation would be to create a single

function that prices one option. Looping through all options in the data set and

calling this function for each of them will then produce the end results. Pseudo-code

in Algorithm 2 describes the approach we took based on the book and articles by

Hull and White. Note that real is a data type that can be either single or double

precision �oating point number based on the required accuracy.

The implementation iterates through all given options, constructs a trinomial tree

for each of them and propagates prices back through the tree, obtaining the price

approximations for each option and returning them in the end. The algorithm follows

the intuition provided in the previous chapter 3. The focus of this implementation

is on correctness and simplicity.
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4.1 Algorithm Description

Precomputation Pricing of one option starts with computing its constants

such as tree width and rate step, tree height and time step, and other values needed

to solve the formulas in Hull and White model. Afterwards, for each width step

j, rate and probabilities (up, middle, down) are precomputed for use during both

forward and backward propagations.

Algorithm 2: Sequential implementation

1 function ComputeOptionPrice

Input : option : { StrikePrice, Maturity, Length, TermUnit,

TermStepCount, ReversionRate, Volatility, Type }

yields : { [Prices], [Timesteps] }

Output: Price approximation for the option

2

3 Pre-compute probabilities for all width steps j

4 c : OptionConstants = Compute constants for the option

5 /* Option constants include: */

6 /* c.t : int - option length */

7 /* c.X : real - option strike price */

8 /* c.dt : real - time step (height) */

9 /* c.dr : real - rate step (width) */

10 /* c.jmax : int - max. j of the tree */

11 /* c.width : int - tree width ( 2 � c.jmax + 1) */

12 /* c.height : int - tree height */

13 /* c.type : CALL | PUT - option type */

14

15 /* Create an array of alphas and set the first alpha to the

initial dt-period interest rate */

16 alphas : real[c.height+ 1]

17 alphas[0] = Compute yield at c.dt
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Forward propagation The purpose of forward propagation is to compute an

array of alphas of size tree height + 1 that will be used during backward propagation.

The �rst alpha is set to the interest rate at time of one time step. To capture the tree

values at any given time step, only the current and previous tree levels of size tree

width are needed, these two arrays are namedQs and QsCopy. The single starting

value in the middle of the tree (the root of the tree) inQs array is initalized to 1$.

After the arrays are initialized, the program iterates through time steps along the

tree height. At each time step, it goes through the values Q computed in the previous

step. Every value contributes to three values in the next time step (QsCopy) as

illustrated in �gure 4.1, according to the precomputed rates and probabilities. Note

that this is an example of standard branching and there are also a bottom and a top

branching, see �g. 3.1. After allQs in the next step are computed, their values are

aggregated to compute the next alpha. Lastly, arraysQs and QsCopyare swapped

and QsCopyis reset to zeros for the next iteration. Note that this approach combines

stages 1 and 2 described in chapter 3.3 in a single iteration of the forward propagation

loop.

Figure 4.1: Forward propagation - computing the next step

Source: Compiled by the authors
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Algorithm 3: Sequential implementation - forward propagation

18 /* Forward propagation */

19 Qs = real[c.width]

20 QsCopy = real[c.width]

21 Qs[c.jmax] = 1 /* Set initial node to 1$ */

22

23 /* Iterate through nodes along tree height */

24 for i = 0 to c:height� 1 do

25 /* Compute the highest allowed j index on step i */

26 jhigh : int = min(i, c.jmax)

27 alpha : real = alphas[i]

28

29 /* Iterate along width between j indexes on step i */

30 for j = � jhigh to jhigh do

31 Compute and add to QsCopy on j+ 1, j, j � 1

32 end

33

34 /* Iterate along width between j indexes on step i + 1 */

35 jhigh1 : int = min(i + 1, c.jmax)

36 alpha_p1 : real = 0

37 for j = � jhigh1 to jhigh1 do

38 Aggregate alpha_p1 based on QsCopy[j]

39 end

40

41 Compute alphas[i+ 1] based on alpha_p1

42 Qs = QsCopy

43 Fill QsCopy with 0

44 end
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Backward propagation After all alphas are computed, they are carried over

to backward propagation along with two arrays of size tree width. These arrays

called Prices andPricesCopy are used to store the current and previous tree levels

similarly to forward propagation. Prices are initialized to 100$ which represents the

payo� at bond maturity.

Afterwards, the program iterates through time steps along the tree height starting

from the end of the tree. At each time step, the values at stepi � 1 in P ricesCopy

are computed from three values inP rices at step i using alpha ati and the precom-

puted probabilities as illustrated in �gure 4.2. If the current time step is the option

maturity, every computed price is discounted by the option strike price, taking care

of the option type being call or put as well. Lastly, arrays Prices andPricesCopy

are swapped andPricesCopy is reset to zeros for the next iteration.

Figure 4.2: Backward propagation - computing the previous step
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Algorithm 4: Sequential implementation - backward propagation

45 /* Backward propagation */

46 Prices : real[c.width]

47 PricesCopy : real[c.width]

48 Fill Prices with 100 /* Initialize prices to 100$ */

49

50 for i = c:height� 1 to 0 do

51 jhigh : int = min(i, c.jmax)

52 alpha : real = alphas[i]

53

54 for j = � jhigh to jhigh do

55 jind : int = j + c.jmax

56 Compute res based on Prices at j+ 1, j, j � 1

57

58 if Step i is the option maturity then

59 if c.type is CALL then /* Call option */

60 PricesCopy[jind] = max(res� c.X; 0)

61 else /* Put option */

62 PricesCopy[jind] = max(c.X � res; 0)

63 end

64 else

65 PricesCopy[jind] = res

66 end

67 end

68 Prices = PricesCopy

69 Fill PricesCopy with 0

70 end

71

72 /* Return the calculated current option price */

73 return Prices[c.jmax]
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4.2 Validation

Results obtained by running this implementation will be used for validation of the

parallel algorithms, so it is important that they are fully correct. We compared our

intermediate array values ofalphas, Qs and Prices along with the �nal results with

values provided by our supervisor and made sure they are the same within a margin

of error.

Table 4.1 compares the value of a three-year put option on a nine-year zero-coupon

bond with a strike price of 63: mean-reversion ratea = 0:1 and volatility � = 0:01,

which is an example option in Hull & White [18, pg. 706]. The left table shows

book results [18, pg. 707] and the right table shows our results for the same option

with di�erent time steps. Our approach is fully numerical, while their tree results

are semi-analytic, since they do not build a tree for the whole nine-year bond, but

only for the three-year option and then compute the rest using analytic formulas.

Despite this fact, our result for daily time steps, i.e.365� 9 steps for the full tree,

are within 0:02%di�erence of their analytic result.

Table 4.1: Sequential results compared on a book example

Source: Compiled by the authors, based on [18, pg. 707].

Steps Tree Analytic
10 1.8468 1.8093
30 1.8172 1.8093
50 1.8057 1.8093
100 1.8128 1.8093
200 1.8090 1.8093
500 1.8091 1.8093

Steps per year Results
1 1.87996
5 1.83827
10 1.81851
25 1.81120
100 1.81053
365 1.80968
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Summary

This chapter provided an overview of our sequential implementation with focus on

explaining the computations in forward and backward propagations and how the

�nal results are obtained. Finally, it described how the computations and results

were validated with external sources. The following chapter will describe how this

implementation was adapted for a parallel one option per thread version in CUDA.
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One Option per Thread

This chapter describes the �rst parallel approach that exploits only outer parallelism,

i.e. it computes a batch of options in parallel where one thread prices a single

option. This algorithm is therefore similar to the sequential implementation with

some caveats concerning GPGPU architectures that were tackled in an iterative

process producing multiple versions of the code.

5.1 Sequential Implementation to CUDA

Global memory setup

It was necessary to identify arrays being used and consider how to store them in

device memory. The input is a structure of arrays of size number of options, each

array representing one parameter of the options. This structure is ideal for coalesced

memory access because consecutive threads will load contiguous memory, optimizing

the number of memory transactions and thus speed. The algorithm itself requires

two arrays of tree width size forQs and QsCopy, and one array of tree height size

for alphas per option. We place the three arrays in GPU's global memory, where

each thread uses a single part of each array which size depends on the option being

computed.

Global memory accesses

Array accesses had to be analyzed as well to avoid race conditions and optimize

performance. The sequential implementation pre-computes rates and probabilities
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for each node along the width and saves them. They are reused later both during

the forward and backward propagations. In contrast, for this CUDA implementation

we would have to store the values in global memory, resulting in slower access times.

Instead, since they were accessed too few times, we opted to re-compute the values

every time they were used in order to save query time and reduce the global memory

consumption.

More importantly, in the forward propagation computing Qs at the next time

step was done by a single computation on the current node and adding the value

to three nodes in the next step as shown in �gure 4.1. This performs 1 read for

the computation and 3 reads followed by 3 writes for the addition. For all parallel

implementations, thisscatter pattern was replaced by agather pattern illustrated

in �g. 5.1, which performs 3 reads/computations and 1 write in this scenario.

This makes it necessary to pre-compute and save the values forQs �rst to avoid

computing the same value multiple times. The �nal result makes 1 read/computa-

tion/write in the pre-computation step followed by 3 reads and 1 write in computing

the next time step. This approach eliminates 1 write and the need to have atomic

additions, which would be necessary when exploiting inner parallelism described in

chapter 6. However, since the tree is trinomial (�g. 3.2), a value can be computed

from up to 5 values from the previous time step. Thus all possible types of branch-

ing have to be enumerated which makes the code more verbose and more di�cult to

maintain.
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Figure 5.1: Comparison of scatter and gather operations

Source: Compiled by the authors

5.2 Implementations

We iteratively implemented 4 versions of this �rst parallel approach. They all share

the same kernel but they store and access the three global arraysQs, QsCopyand

alphasin di�erent ways.

The general steps for all these versions are as follows:

1. Load all options to GPU device memory.

2. Compute widths and heights for all options.

3. Allocate in global GPU memory two (expanded) arraysQs and QsCopywhich

are large enough to hold option-width elements for all the options in the batch.

What �large enough� means will be speci�ed for each version.

4. Similarly, allocate in global GPU memory one arrayalphas which is large

enough to hold option-height elements for all options in the batch.

5. Price all options using our CUDA kernel.

6. Copy results to host memory.
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All pre-processing is performed on the GPU and is implemented using CUDA's

Thrust library 1.

Version 1 - Naive

The �rst version stores arrays in a simple way where one thread gets contiguous parts

of memory with sizes that match the computed option's width/height. Table 5.1

shows an example of storingalphas for 3 options of heights 2-4-3 computed by 3

threads in a single �at array. Each thread needs to know only the start index of

its array chunk along with the option's width/height and then it can access array

elements consecutively. The indices can be easily computed by running inclusive

scans on widths and heights, obtaining also total sizes for the arrays in the process.

Table 5.1: Memory alignment in version 1

Source: Compiled by the authors

T1 T1 T2 T2 T2 T2 T3 T3 T3
� 0 � 1 � 0 � 1 � 2 � 3 � 0 � 1 � 2

This approach is very e�cient in terms of storage space, however, it is very in-

e�cient when it comes to performance. When we analyze how array elements are

accessed in forward (alg. 3) and backward propagation (alg. 4), we �nd out that all

threads access their� 0 at the same time, then move to� 1 and so on. This results

in strided, un-coalesced access to global memory which ine�ectively uses GPU hard-

ware. The next 3 versions tackle this problem by padding and transposing the arrays

on di�erent levels, so as to ensure coalesced accesses to global memory whenever pos-

sible.

Version 2 - Global-level Padding

In order to make array access coalesced, the second version stores arrays padded to

the maximum width/height across all options. Continuing with the example from

1https://developer.nvidia.com/thrust
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above, the new alignment is illustrated in table 5.2. This obviously leads to some

array elements not being used, unless the widths/heights are equal across options.

However, when threads in a warp access the same array index at the same time, the

access is now coalesced and can be performed in fewer memory transactions, greatly

improving performance.

Table 5.2: Memory alignment in version 2

Source: Compiled by the authors

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
� 0 � 0 � 0 � 1 � 1 � 1 � 2 � 2 � 3

To compute sizes of the arrays, it is necessary just to �nd out the maximum

width/height and multiply them by the number of all options. Indexing to array

elements can be simply computed asindex � optionsCount+ optionIndex.

The only downside is that the global padding might require very large memory

chunks to be allocated but unused, especially if the dataset is skewed, i.e. with a

small number of options that have very large widths/heights. According to our tests,

discussed in detail in chapter 9, this version is up to ~10� faster than version 1 but

the memory footprint is up to ~7� larger. The next two versions try to minimize

the memory footprint by padding arrays on a smaller scale.

Version 3 - Block-level Padding

The third version is designed to save memory compared to the second version, while

keeping memory access coalesced. Here we look at what options get computed in

a single CUDA block (of up to 1024 threads). The maximum width/height of the

options is computed per block and the total size of an array is then the sum of all

block maxima multiplied by the block size.

The pre-processing of options is thus more complex. It is implemented using

reduce_ by_ key and transform_ inclusive_ scan Thrust routines with custom opera-

tions. As a result, arraysQsInds and alphasIndsstoring indices to the respective
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arrays are computed, created using two addition helper arrays, all of size

doptionsCount=blockSizee. The computed indices represent the start of an array part

speci�c to a block, elements can then be accessed asblockSize� index + threadId.

The downsides of this version are that if options in the dataset are not sorted

by widths and heights, the amount of saved memory compared to version 2 may

be very small while this version requires more pre-processing time and intermediate

arrays. With correct sorting applied and the block size kept small, on our datasets

this version uses only up to 4% more memory than version 1, while keeping up to

~10� performance lead like version 2. The last version further reduces the array

padding even on bigger block sizes.

Version 4 - Warp-level Padding

The fourth version is similar to version 3 with a di�erence that we look at what

options get computed by a single warp of 32 threads instead of the whole block. This

is motivated by the fact that coalesced accesses to global memory are supported by

hardware at the (half) warp level, i.e., the threads in a warp execute in lock step, and

need to access consecutive memory locations in a SIMD instruction. In e�ect, array

padding is performed at a lower granularity�that of a warp�while still preserving

coalesced accesses. Depending on a dataset, the added warp-level padding might be

smaller than block-level padding, in exchange forblockSize=32 more indices to be

stored. When comparing version 4 with version 3, we achieved up to 70% decrease

in memory for a CUDA block of size 1024.

Futhark implementation

This one option per thread parallel approach was also implemented in Futhark as a

proof of concept and is equivalent to version 2 since Futhark uses global padding on

arrays to ensure that memory accesses are coalesced. This version will be discussed

further in chapter 7.
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Optimizations

Choosing thread block size Since this implementation prices one option per

thread, the thread block size represents the number of options being priced in parallel.

Those options can have di�erent widths and heights, leading to thread divergence

on outer parallelism (heights) and inner parallelism (widths). It follows that bigger

blocks might contain options that vary in widths/heights more than in small blocks,

thus causing more threads to wait for completion of the block execution. On the

other hand, smaller block sizes result in more thread blocks being scheduled, what

adds extra overhead. Depending on the dataset, block sizes of either 128 or 256 are

preferred.

Sorting input In order to (easily) reduce thread divergence, we can sort options

before computation by either heights or widths. This would make one warp/block

of threads compute options with similar number of execution steps and reduce the

amount of time the threads have to wait for each other's execution. Our experiments

show that sorting does have a large positive impact on performance, up to ~10� faster

than no sorting, but the choice of sorting by height or width depends on a dataset

with a di�erence of up to 20%.

5.3 Validation

To validate computed results from the CUDA implementations, we created a test

case that uses the example mentioned in section 4.2. 100 instances of this option

with gradually more time steps are �rst computed on the CPU using the sequential

implementation from chapter 4 and then compared with results computed from all 4

versions. The test case was written using Catch22 test framework for its simplicity.

The di�erences between �oating point GPU results and CPU results must be inter-

preted carefully, since there are many reasons why the same sequence of operations

may not be performed on the GPU and CPU, e.g. because of fused multiply-add

2https://github.com/catchorg/Catch2
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on the GPU, rearranging operations for parallelization, higher than expected pre-

cision for computations on the CPU and rounding not required by common math

operations by the IEEE 754 standard [44, pg. 16].

Despite this, we successfully validated our results using a small epsilon value

of std::numeric_limits< real >::epsilon() � 1000, where real is either single or dou-

ble precision �oating point number. This equals to0:000119209for single and

0:00000000000022204for double precision, which makes double precision much more

reliable.

Summary

This chapter provided an overview of our parallel one option per thread implemen-

tation using CUDA with focus on explaining the challenges of parallelizing the se-

quential implementation from chapter 4. It introduced 4 versions of this parallel im-

plementation, each with its own advantages and disadvantages. Finally, it described

how the GPU results were validated against the CPU results and the challenges of

doing that. The following chapter will describe how this implementation was adapted

to compute multiple options in a single CUDA thread block.
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Multiple Options per Thread Block

This chapter describes our CUDA implementation that prices multiple options in

one thread block. This approach exploits inner parallelism, leveraging fast shared

memory for computations ofQs and Prices. The limitation of this version is that it

cannot price options with widths bigger than the size of a thread block (1024), since

every thread computes one value along the tree width. The �attening transformations

applied to derive a multiple options per thread block implementations and the ones

used to derive a fully �attened implementation are semantically the same, as it will

be shown later in section 7.4. For this reason, we have explained them in thorough

details in the context of a functional language in chapter 7, making them easier to

understand. Instead, the descriptions in this chapter are more focused on CUDA-

speci�c challenges.

6.1 CUDA-option to CUDA-multi

To implement this parallel approach, we used CUDA-option as a basis, reusing code

that is not speci�c to each version, such as parts of pre-processing and some compu-

tations.

6.1.1 Memory setup

In this implementation one thread does not compute the whole tree for an option,

rather it computes a single value on the tree width. This allows us to move the array

of Qs to shared memory and even remove the array ofQsCopy, as it was used to hold

Qs temporarily between computations, and now a singleQ value can be temporarily
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stored in a thread register. Shared memory thus comprises of one real array ofQs

and oneuint 16_ t array of 
ags (used by segmented scans), both of thread block size.

Global memory then stores all the options along with their pre-computed widths and

heights, and the array of allalphas.

6.1.2 Pre-processing

After the options are loaded to GPU memory and their widths and heights are

computed, they have to be split into chunks. A chunk represents one or more options

whose combined widths can �t into the chosen thread block size. This process is also

known as bin packing, which is a combinatorial NP-hard problem, so we decided to

implement it in a simple way on the CPU, since it is not a focus of this thesis. The

options are packed by a for-loop, in which an option is put into the current chunk if

the sum of width sizes for options stored already in the chunk does not exceed the

thread block size, otherwise a new chunk is created and the current option index is

added to an array of indices. This produces an array of option indices, e.g.[1; 3; 5],

which describes that there are 5 options computed by 3 thread blocks, the �rst block

will compute option 0, the second one options 1 and 2, and the third one options 3

and 4.

It is obvious that this simple implementation packs options into a smaller number

of chunks/blocks if the options are sorted by width. However, it should also be desir-

able to sort the options by height to optimize thread divergence, since computations

on the tree width are parallelized. Therefore, a better bin packing implementation

might improve performance by packing more options into chunks by their widths,

while optimizing thread divergence on heights, probably as a trade-o� for more pre-

processing time.

6.1.3 Flattening

Algorithm 5-9 outlines the kernel written for this implementation, which is much

more complex than the kernel that computes one option per thread described in

chapter 5. Since computed values are dependent on results from multiple threads, it
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is important to synchronize threads in the block to prevent race conditions. However,

special care has to be taken for this not to result in deadlocks because of thread

divergence, caused by options with di�erent widths and heights inside a block.

Initialization First, option indices inds for a block have to be distributed to

threads based on option widths, such that each thread can compute one value inQs.

For example, threads 0-200 compute option 0 with width 201 and threads 201-1000

compute option 1 with width 799, leaving threads 1001-1023 unoccupied. This is

done by a series of segmented scans on arrays with indices and widths, resulting in

every thread in block getting an index of the option to compute (optionIdx) and

scannedWidthIdx representing the start index ofQs (Alg. 5, 6, 7 lines 10-65). Af-

terwards, one thread per option initalizes the �rstQ and alpha value (Alg. 7 lines

69-71). To access the global array ofalphas, a thread uses helper functionsgetAl-

phaAt(index, optionIndex)and setAlphaAt(index, value, optionIndex)that compute

global array indices based on the speci�c version described later in section 6.2. It can

be noted that the actions performed in the initialization have close resemblance to

some of the transformations described in chapter 2.4. However, it is di�cult to relate

them to a single speci�c �attening transformation (e.g. map, reduce, replicate), as

CUDA is not using any of those functions directly.

Forward propagation In the loop, it is important that all threads use the

maximum height of options in the block, not the height of their option which might

be smaller. This way block-level synchronization can be used inside the loop without

the possibility of deadlocks. However, at each time step a thread has to check if

it should even compute newQs based on its option's height. First, a thread pre-

computes the nextQ value, then all threads can quickly compute the nextQ value

from multiple Qs in the previous step and save it in a local variable (Alg. 8 lines

75-88). Afterwards, Qs are multiplied in order to be summed up using parallel

segmented scan (Alg. 8 lines 90-92). Next, a new alpha value is computed from the

last scannedQs per option (Alg. 8 lines 95-98). Lastly, all threads setQs to the new

Q values (Alg. 8 line 99).
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Backward propagation Before the loop, each threads setsQs to 100 (called

Prices in the sequential implementation, reusing the array in this version) (Alg. 9

lines 103-104). Then in the loop, threads have to use max height again in order to

use thread synchronization. Each thread computes one price in the previous time

step (if valid for current option) and after all of them are done, they store the values

and move to another step (Alg. 9 lines 106-119). After the whole tree is traversed,

one thread per option sets the price result in the global results array (Alg. 9 lines

122-124).

65



Chapter 6. Multiple Options per Thread Block

Algorithm 5: Multiple options per thread block kernel

1 function kernelMultipleOptionsPerBlock

Input : options : { [StrikePrices], [Maturities], [Lengths], [TermUnits],

[TermStepCounts], [ReversionRates], [Volatilities], [Types], [Widths],

[Heights] },

yields : { [Prices], [Timesteps] }

[inds], [alphas], [results]

Output: Price approximations for the options in block

2

3 /* Initialize shared memory references */

4 volatile extern __shared__ char sh_mem[] /* Memory array for block */

5 Qs = (real *)&sh_mem /* Qs are the first part */

6 values = (int32_t *)&sh_mem /* Helper int array, overwrites Qs */

7 �ags = (uint16_t *)&sh_mem[blockDim.x � sizeof(real)] /* After Qs */

8

9 /* Compute option indices and scanned widths */

10 idxBlock = blockIdx.x == 0 ? 0 : inds[blockIdx.x � 1]

11 idxBlockNext = inds[blockIdx.x]

12 idx = idxBlock + threadIdx.x

13 width = 0

14 if idx < idxBlockNext then /* Don't fetch options from next block */

15 width = options.Widths[idx]

16 values[threadIdx.x] = width

17 else

18 values[threadIdx.x] = 0

19 end

20 __syncthreads
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Algorithm 6: Multiple options per thread block kernel - cont. 2

21 /* Scan widths inplace to obtain indices to Qs for each option */

22 scanPlus values

23 scannedWidthIdx = � 1

24 if idx < = idxBlockNext then

25 /* Get the scanned width as in exclusive scan */

26 scannedWidthIdx = threadIdx.x == 0 ? 0 : values[threadIdx.x � 1]

27 end

28 __syncthreads

29

30 /* Send option indices to all threads */

31 values[threadIdx.x] = 0 /* Clear values and flags */

32 �ags[threadIdx.x] = 0

33 __syncthreads

34

35 /* Set values to option indices and flags to option widths */

36 if idx < idxBlockNext then

37 values[scannedWidthIdx] = threadIdx.x

38 �ags[scannedWidthIdx] = width

39 else if idx == idxBlockNext and scannedWidthIdx< blockDim:x then

40 /* Fill the remaining part of the block (if any) */

41 values[scannedWidthIdx] = threadIdx.x

42 �ags[scannedWidthIdx] = blockDim.x � scannedWidthIdx

43 end

44 __syncthreads

45

46 /* Scan option indices with widths as flags to distribute them */

47 sgmScanPlus values �ags

48 optionIdxBlock = values[threadIdx.x] /* Option index within block */
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Algorithm 7: Multiple options per thread block kernel - cont. 3

49 /* Let all threads know about their scannedWidthIdx (Q start) */

50 if idx < = idxBlockNext then

51 �ags[threadIdx.x] = scannedWidthIdx

52 end

53 __syncthreads

54 scannedWidthIdx = �ags[optionIdxBlock]

55

56 /* Get the option for thread and compute its constants */

57 OptionConstants c

58 optionIdx = idxBlock + optionIdxBlock

59 if optionIdx < idxBlockNext then

60 c = Compute constants for options[optionIdx]

61 else /* Fake option to fill block */

62 c.n = 0

63 c.width = blockDim.x � scannedWidthIdx

64 end

65 __syncthreads

66

67 /* Initialize Qs and alphas in one thread per option */

68 if threadIdx:x == scannedWidthIdxand optionIdx < idxBlockNext then

69 alpha = compute yield at dt /* Initial alpha value */

70 setAlphaAt(0, alpha, optionIdx)

71 Qs[scannedWidthIdx + jmax] = 1 /* Initial Q value */

72 end
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Algorithm 8: Multiple options per thread block kernel - cont. 4

73 /* Forward propagation */

74 for i = 1 to maxHeightdo

75 jhigh = min(i, c.jmax)

76 j = threadIdx.x � c.jmax � scannedWidthIdx

77 /* If both height and width steps are valid for this option */

78 if i < = c:height and j > = � jhigh and j < = jhigh then

79 alpha = getAlphaAt(i � 1, threadIdx.x)

80 Qs[threadIdx.x] *= exp(...) /* Pre-compute Qs using alpha */

81 end

82 __syncthreads

83

84 Q = 0

85 if i < = c:height and j > = � jhigh and j < = jhigh then

86 Q = Compute next step from Qs

87 end

88 __syncthreads

89

90 Qs[threadIdx.x] = Q � exp(...) /* Set Qs for summation */

91 __syncthreads

92 sgmScanPlus Qs �ags /* Sum up Qs */

93

94 /* Get last values of segmented scans (reduced results) */

95 if i < = c:height and threadIdx:x == scannedWidthIdx+ c:width � 1 then

96 alpha = Compute alpha from Qs[threadIdx.x]

97 setAlphaAt(i, alpha, optionIdx)

98 end

99 Qs[threadIdx.x] = Q /* Set Qs to new values */

100 __syncthreads

101 end
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Algorithm 9: Multiple options per thread block kernel - cont. 5

102 /* Backward propagation */

103 Qs[threadIdx.x] = 100 /* Init prices to 100$ */

104 __syncthreads

105

106 for i = maxHeight� 1 to 0 do

107 jhigh = min(i, c.jmax) j = threadIdx.x � c.jmax � scannedWidthIdx

108 price = Qs[threadIdx.x]

109 __syncthreads

110

111 if i < = c:height and j > = � jhigh and j < = jhigh then

112 alpha = getAlphaAt(i � 1, optionIdx)

113 price = Compute new price using alpha

114 end

115 __syncthreads

116

117 Qs[threadIdx.x] = price /* Set prices to new values */

118 __syncthreads

119 end

120

121 /* Set results to prices on the first nodes */

122 if optionIdx < idxBlockNext and threadIdx:x == scannedWidthIdxthen

123 results[optionIdx] = Qs[scannedWidthIdx + c.jmax]

124 end
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6.2 Implementations & Validation

We derived 3 implementations that di�er only in the way how the array ofalphasin

global memory is stored and accessed. It is similar to the 4 CUDA-option versions,

except that the array of Qs is not of concern here because it is in shared memory.

Version 1 - Naive

The �rst simple version was created to be a starting point for the other versions and

for comparison. Thealphasare padded on a global level, thus the size equals the

maximum height of all options times the number of options. Values are accessed in

a straightforward way asmaxHeight� optionIndex + index. However, this access is

not coalesced and the next two versions solve that to improve performance.

Version 2 - Global-level Padding with Coalescing

The second version is similar, since thealphasare padded on a global level. How-

ever, the values are being accessed in transposed form asoptionsCount � index +

optionIndex. This simple change in indexing should result in performance speed-ups

for no additional cost, either in terms of storage requirements or pre-processing time.

Interestingly, in our experiments, this version did not lead to noticeable performance

gains, probably becausealphasare not accessed as often asQs which are already in

shared memory, and version 1 does have global-level padding.

Version 3 - Block-level Padding

The third version tries to improve on storage requirements as it uses padding for

alphason block level. It does so by computing an array of indices toalphas, each

value representing the beginning of a segment allocated for a single block. One

segment is of size maximum height of options in the block times the number of

options in the block. The values are then accessed in a slightly more complicated

way asalphaIndexForBlock+ optionIndexInBlock+ optionsCountBlock� index. This
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should result in less global memory being allocated in trade-o� for an array of indices

created, and then accessed in the kernel. It might also lead to speed-ups due to

improved locality of reference. For our datasets, this version performs up to ~3�

faster while using up to 6x less memory than versions 1 and 2. Note that warp-level

padding is not possible to achieve in this approach as one option can be computed

by multiple warps.

Optimizations

Choosing thread block size Due to the nature of this approach, it is best

to choose the biggest thread block size available to be able to manually pack as

many options into a block as possible. All versions when compiled use more than 64

registers which e�ectively limits the thread block size to 512. However, we can also

limit the amount of registers1 in order to be able to use the maximum block size of

1024. During our experiments, we observed that limiting the number of registers to

32 and setting block size to 1024 gives the best performance (up to ~2:3� faster) as

it lead to full occupancy of the device SMs.

Sorting input This approach eliminates thread divergence caused by di�erent

option widths by applying �attening to the inner parallelism. In order to reduce

thread divergence on heights, it should be bene�cial to sort the options by height

before computation. However, sorting options by width might lead to more e�cient

packing of options into chunks. Experiments show that sorting by height gives better

performance for all tested datasets, up to ~2:3� faster than no sorting.

Validation

Computed results from all 3 versions are validated by expanding the test case de-

scribed in section 5.3. Furthermore, chapter 9 will describe tests using bigger datasets.

1We can limit the number of registers by setting the nvcc compiler �ag �maxrregcount=32 ,
as mentioned in https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.htmloptions-for-
steering-gpu-code-generation
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Summary

This chapter provided an overview of our parallel multiple options per thread block

implementation using CUDA with focus on explaining the challenges of exploiting

the inner parallelism, compared to the one option per thread implementation from

chapter 5. It introduced 3 versions of this parallel implementation, the �nal third

version being the best performing one. Finally, it described how the GPU results

were validated against the CPU results using our common CUDA test case. The

following chapter will introduce the third parallel approach � full �attening.
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Full Flattening

This chapter will introduce the classic, fully-�attened implementation of the model.

It has been written in Futhark, a functional, high-level data-parallel language, with

the main reason for this being simplicity.

The purpose of this implementation is to further underline the importance of the

locality of reference vs. thread divergence trade-o�, particularly when working with

large data sets. In this case, thread divergence optimization is at its peak, while

locality of reference is at its worst. The implementation exploits both inner and

outer parallelism, as it processes all input options at the same time.

7.1 Sequential Version to Futhark-basic

As full-�attening is di�cult to imagine and compose from scratch, we have started by

creating a basic, one option per thread Futhark implementation, which we refer to as

Futhark-basic. Due to the functional language semantics, some of the optimizations

done inCUDA-option were not possible here. This involves particularly the memory

allocations, which are handled automatically by the Futhark compiler, allowing only

global memory padding. Nevertheless, sorting on either width or height can still turn

to be useful in order to reduce thread-divergence overhead.

As it will be shown in chapter 9, albeit its drawbacks, the performance ofFuthark-

basichas the full potential of competing with both CUDA implementations. Despite

that, its main purpose is to serve as a template for deriving a fully-�attened version,

which we refer to asFuthark-�at .

Using a functional language to represent a data-processing algorithm is rather
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straight-forward. Once the options are read in the sequential version, they are iter-

ated over by using afor-loop. In Futhark, this is done by amap operation. Since this

is the �rst map encountered in the Futhark program, and it is not nested, the func-

tion being mapped will be executed in parallel over all options. Temporary arrays

such asQs, QsCopy and alphasare declared with Futhark's let-binding and every

variable gets allocated in global memory. While C programs usually �rst allocate an

array, then enter a loop to provide its initial values, in Futhark this will be done by

a composition ofreplicate, iota or map.

The rest of the code translation followed the sequential code inside the loop, by

replacing C++ code with its functional Futhark equivalent. Two optimizations have

been done in order to simplify and reuse code, which included (i) moving the back-

ward and forward helpers into reusable functions, together with the computation of

jvalues and (ii) replacing the scatter in the forward helper by a gather operation in

order to optimize writes. Other more complex transformations include summing up

elements in an array, done by a loop in C++ and by a reduce operation in Futhark.

However, none of these transformation can be described as non-trivial, as they are

typical to functional languages. The complete code base for Futhark-basic can be

found in �le futhark/futhark-basic.fut and is outlined in algorithm 10.
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Algorithm 10: Futhark-basic

1 function trinomialBasic

Input : options : [ { StrikePrice, Maturity, Length, TermUnit,

TermStepCount, ReversionRate, Volatility, Type } ],

yields : [ { Price, Timestep } ]

Output: Price approximations for all options

2 results = map options with function:

3 constants = compute constants from option

4 Qs = replicate width 0 /* Init Qs to 0 */

5 Qs[jmax] = 1 /* Initial Q value */

6 alphas = replicate height 0 /* Init alphas to 0 */

7 alphas[0] = compute yield at constants.dt /* Initial alpha value */

8 /* Forward propagation */

9 loop (Qs,alphas)for i < height do

10 /* f 1; f 2; f 3 check for out-of-bounds on j-index and set 0s */

11 Qs = map f 1 Qs /* Pre-compute Qs */

12 Qs = map f 2 ( iota width) /* Get next step with fwdHelper */

13 tmpQs = map f 3 Qs /* Compute tmpQs for reduce */

14 alpha = reducePlus tmpQs /* Compute next alpha */

15 alphas[i+ 1] = alpha /* Set next alpha */

16 end

17 /* Backward propagation */

18 Prices = replicate width 100 /* Init Prices to 100$ */

19 loop (Prices) for i=(max_height-1) � 0 do

20 /* f 4 check for out-of-bounds on j-index and sets 0s */

21 Prices = map f 4 ( iota width) /* Prev step with bkwdHelper */

22 end

23 return@map Prices[jmax] /* Result for one option */

24 end

25 return results
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7.2 Futhark-basic to Futhark-�at

Once Futhark-basic was validated against the C++ sequential implementation and

the book example,Futhark-�at could be derived. In Futhark, all arrays are stored

in (slow) global memory, which increases the time each thread needs for reading the

data. The two implementations work with di�erent levels of parallelism. Futhark-

basic uses nested parallelism, where the pricing of one option happens sequentially,

but multiple options are priced simultaneously with the use of a parallel map. In

Futhark-�at many nested computations are performed in parallel, operating on enor-

mous arrays, each containing data for all options. Helperindex and �ag arrays are

used to indicate the start and end memory addresses of each option in such arrays,

in order to allow multiple threads to work on the same array in parallel. The way

threads are allocated to work on each array happens behind the scenes, automated

by the Futhark compiler. The transformations performed inCUDA-multi (see chap-

ter 6) and Futhark-�at should in theory be the same, as the di�erence between the

two only lies in the way memory is allocated, the use of in-place updates in CUDA,

and the amount of options processed in parallel.

The program expects to read the dataset from input as a structure of arrays. The

trinomialFlat function is then invoked with an array of all options as input, where

multiple arrays are computed from it, representing a series ofOptionConstantsmen-

tioned in algorithm 2 in chapter 4. It can be seen that memory usage increases

proportionally with the number of options. Furthermore, every array created inside

trinomialFlat , such asQs and alphas is also stored in global memory. In this im-

plementation, the size of the width-dependent arrays (e.g.Qs and QsCopy) is the

sum of all widths times the data type size (i.e. whether a �oat or double precision

is used). Height-dependent arrays (alphas) on the other hand are computed as the

number of options times the maximum height times the data type size (Note that an

optimization can be made here, to avoid the padding of height-dependent arrays).

While this implementation is expected to perform fast enough on small data sets, it

is also expected that the performance will signi�cantly degrade with the increased

number of options, because of the excessive amount of memory it requires.
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SincetrinomialFlat works with arrays of individual properties for all options, dif-

ferently from the function in Futhark-basic, which works with individual properties

for one option at a time, several �attening principles were used in order to apply the

same permutations to all elements in the arrays at the same time. After inspecting

Futhark-basic code, we have extracted functions that have to be �attened in order

to apply them on �at arrays.

Flattening transformations

It can be seen immediately on Algorithm 10 that there is a repetitive use of oper-

ations, i.e., there are tworeplicates on widths and 4 maps on widths. This allows

e�cient reuse of many of the temporary arrays, used in the process of �attening, such

as inds and �ags. Furthermore, it is possible to reuse arrays between the di�erent

transformations, as e.g.replicate and map are both done on the widths array. The

complete pseudo-code forFuthark-�at can be found under algorithms 11-12 further

in this section. Before the algorithm itself, we introduce the speci�c �attening oper-

ation we have used in order to implement it.

The code transformation starts from areplicate on the widths (Alg. 10 line 4). This

is used to initialize the array ofQs. As shown in the example in section 2.4.4, �rst

step is obtainingns and ms. The ns in this case are the widths, which we can get

from the option constants. We can then obtain theinds and the size. The inds are

computed by performing an exclusive scan. Since we needed thescanned_lens(an

inclusive scan on widths) array further in the code, we omit the exclusive scan and

instead perform a map, adding the neutral element 0 in the beginning and excluding

the last element ofscanned_lens(Alg. 11 line 7):

len_ inds = map (i ! if (i == 0) then 0 else scanned_ lens[i � 1])

(iota numAllOptions)

Furthermore, we can obtain thesize from last scanned_lens. The next step is ob-

taining a �ags array as 
ags = scatter (replicate w 0) len_ inds widths (Alg. 11 line

8). The array of ms on the other hand is obtained by performing areplicate w 0.
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Computing the vals array is the next step of the transformation. It can be seen in

Futhark-basic, however, that theQs array is not only initialized, but also the jmaxth

element of it is set to 1 (Alg. 10 lines 4-5). We have decided to simplify the process by

combining these two operations. We start by creating asgm_inds array by (Alg. 11

line 9-10):

scatter (replicate w 0) len_ inds (iota numAllOptions)

wherenumAllOptions is obtained throughlength options. We then perform

sgmScanPlus 
ags sgm_ inds which results in an array containing indexes of all

options, spread across thesizeof Qs. In the next step, we create the array (Alg. 11

line 13)

q_ lens= map(x ! x � 1) (sgmScanPlus 
ags(replicate w 1))

which contains segmented enumerators for each of the option widths. This array is

going to be useful for gettingj � indexes from the Qs arrays later on. Finally, we

apply (Alg. 11 line 14)

Qs = map (( i; k ) ! if (i == jmaxs[sgm_ inds[k]]) then 1 else0) q_ lens (iota w)

This concludes the �rst replicate on widths.

The next step is a replicate on alphas (Alg. 10 line 6) along the height of all

trees. We have approached this transformation by determining the max height

from all options, which could then be used to create an enormous array of size

total_ len = numAllOptions � max_ height (Alg. 11 line 16), wheremax_ height is

obtained with a custom reduce on the heights, which �nds the highest element.

Once again we want to combine the initialization ofalphasto 0 and the computation

of alphas[0] with the use of the yield curve, however, for all options. This means

that every 0th element of each segment ofalphas has to be assigned with a value

from the yield curve. We can do this in 1 step, but for simplicity, the pseudo-code

of Futhark-�at divides these �rst computations of alphas in two steps. We �rst

replicate total_ len 0 to initialize the array. Finally, we obtain (Alg. 11 line 21)

alphas= scatter alphas(map (i ! i � seq_ len) ( iota numAllOptions)) yields.
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The next three operations are two maps onQs and one oniota width (Alg. 10

line 11-13). As mentioned in 2.4.1, a nestedmap is simply the same function ap-

plied to the �at array. Since we already have the �at Qs, we can safely apply the

maps (Alg. 12 lines 25-27). Similarly, we haveq_lens, which contains segmented

enumerators of allwidths. Note that, as before, the mapping functions consist of a

safe mechanism, checking if the j-value is going out of bounds. This can happen in

the beginning of the tree construction, asj min and j max have not been reached yet,

hence some nodes are missing, e.g. there are no nodes above node B, or below node

D on �g. 3.2.

A reduce on tmpQs is done next (Alg. 10 line 14), which needs to be �attened

in order to obtain the new alphas for the next steps of all options. Luckily,tmpQs

are already �at, as it is a result of amap operation performed onQs. As mentioned

in chapter 2.4.4, we can obtain thevals in a sgmReduceby using a segmented scan

(Alg. 12 line 28):

alphaVals= sgmscanPlus 
ags tmpQs

We remove the redundant step of computing the actual reduce result and instead

write the next step ofalphasdirectly, with the use of the alpha_indsp1 helper array

(Alg. 12 lines 31-34).

alpha_ indsp1 = map f 6 (iota numAllOptions)

alphas = scatter alphas alpha_ indsp1 alpha_ vals

The backward propagation begins with the initialization of thePrices array, which

is a map over iota w, which is already �at, hence the map function is simply applied

to all �at elements (Alg. 12 line 38). Furthermore, we observe that Prices inside the

backward propagation step are also computed with the use of amap over iota w,

hence the same rule applies (Alg. 12 line 41).

Finally, Prices at all jmax must be returned. For this step, we can easily obtaininds

of all root elements inPrices and their respectivevals. The algorithm is �nalized by

returning res = scatter (replicate numAllOptions 0) inds vals (Alg. 12 line 45-49),

which consists of the �nal price estimates for all options.
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Algorithm 11: Futhark-�at

1 function trinomialFlat

Input : options : [ { StrikePrice, Maturity, Length, TermUnit,

TermStepCount, ReversionRate, Volatility, Type } ],

yields : [ { Price, Timestep } ]

Output: Price approximations for all options

2 /* Get option constants */

3 (widths, heights, constants) = unzip ( map f 1 options)

4 numAllOptions = length options /* Get length of options */

5 scanned_lens =scanPlus widths /* Scan widths */

6 w = last scanned_lens /* Total size of all width arrays */

7 len_inds = map (i ! if (i == 0) then 0 else scanned_lens[i � 1]) ( iota

numAllOptions) /* Get width indexes */

8 �ags = scatter ( replicate w 0) len_inds widths /* Get width flags */

9 sgm_inds = scatter ( replicate w 0) len_inds ( iota numAllOptions)

10 sgm_inds = sgmscanPlus �ags sgm_inds /* Get segm. width inds */

11

12 /* Get j min to j max range values for all options, represented in

the range from 0 to 2 � j max + 1 */

13 q_lens = map (textx ! x � 1) ( sgmscanPlus �ags ( replicate w 1))

14 Qs = map ((i,k) ! if (i == jmaxs[sgm_inds[k]]) then one else zero) q_lens

( iota w) /* Initialize Qs */

15 /* Get max height */

16 max_height = reduce ((x,y) ! if (x > y) then x else y)) 0 heights

17 seq_len = max_height + 1 /* Compute length of max tree height */

18 total_len = numAllOptions * seq_len /* Copmute alphas length */

19 alphas = replicate total_len 0 /* Init alphas array with 0s */

20 /* Init alphas array with initial alpha values on starting

indexes for all options */

21 alphas = scatter alphas (map (i ! i � seq_ len) ( iota numAllOptions)) yields
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Algorithm 12: Futhark-�at - cont. 2

22 /* Forward propagation */

23 for (Qs, alphas)for i < max_height do

24 /* f 2; f 3; f 4 check for out-of-bounds on j-index and set 0s */

25 Qs = map f 2 (Qs) (q_lens) ( iota w) /* Precompute Qexp on Qs array

(uses sgm_inds, seq_len, alphas, other constants) */

26 Qs = map f 3 q_lens (iota w) /* Compute Qs in the next step */

27 tmpQs = map f 4 q_lens (iota w) /* Compute tmpQs for reduce */

28 alpha_vals = sgmscanPlus �ags tmpQs

29

30 /* f 5; f 6 check for out-of-bounds on i-index and set 0s */

31 alpha_vals = map f 5 ( iota numAllOptions) /* Compute alphas */

32 alpha_indsp1 = map f 6 ( iota numAllOptions)

33 /* Update alphas at next step */

34 alphas = scatter alphas alpha_indsp1 alpha_vals

35 end

36

37 /* Backward propagation */

38 Prices = map f 7 ( iota w) /* Init Prices to 100$ */

39 for (Prices) for i = ( max_ height� 1) � 0 do

40 /* f 8 check for out-of-bounds on j-index and sets 0s */

41 Prices = map f 8 q_lens (iota w) /* Compute Price at prev step */

42 end

43

44 /* Get root inds and Prices */

45 (inds, vals) = unzip (map f 9 (iota numAllOptions))

46 /* Scatter prices for all options */

47 Prices = scatter ( replicate numAllOptions 0 ) inds vals

48

49 return Prices /* Return results for all options */
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7.3 Validation

To validate the correctness ofFuthark-�at , we have usedfuthark-bench, a built-in

tool, which is the recommended way to benchmark Futhark programs. The code is

compiled using the speci�ed compiler and ran a speci�ed number of times for each

test case. The output is validated against the output �les in theout folder, previ-

ously created by running the Sequential C++ implementation, described in chapter

4. The average runtime is also printed to the standard output.Futhark-�at has been

successfully validated on all input data sets.

7.4 Comparison with CUDA-multi

The core di�erences betweenCUDA-multi and Futhark-�at are (i) the number of

options that can be priced in parallel and (ii) the arrangement of memory. While

CUDA provides the concept ofthread blocks, where all threads in a single block

are run on the same multiprocessor (hence allowing the use ofshared thread memory

and register memoryfor faster data access), Futhark operates on a larger granularity,

thus is only able to operate with the much slower global memory. This di�erence

makes it possible to derive a multiple options per thread block in CUDA, where a

chunk of options can be priced in parallel, but not in Futhark. Despite that, both

implementations operate on a �at list of options. Whether this list comprises of the

number of options whose widths can �t in a CUDA block (1024), or of all options that

were inputted, the �attening transformations of both versions remain semantically

the same.

When comparing the kernel function fromCUDA-multi with the trinomialFlat

function in Futhark-�at , the �rst noticeable di�erence is the computation of option

constants. While Futhark-�at computes constants for all options in one map oper-

ation and stores them in separate arrays in global memory,CUDA-multi computes

constants only for options in the current thread block (as intended) and stores them

in fast thread registers.

In CUDA's case, option constants could also be stored in shared memory to ease
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the register pressure in order to �t more blocks on SMs, but that would mean each

memory access is always slower. On the other hand, we can also enforce a limit

on the number of registers, but it might result in register spilling to slow global

memory. However, spilled registers can still get cached in L1 cache which has the

same speed as shared memory. We tried to experiment with putting the constants

into shared memory and it indeed eased register pressure, but it also noticeably hurt

the performance. Possible optimization inCUDA-multi could be some combination

of shared memory for rarely accessed constants and registers for frequently accessed

ones.

Another similar di�erence is in forward propagation, whereCUDA-multi stores

temporary valuestmpQs in thread registers which results in much faster access.

Summary

This chapter has provided an overview of our fully �attened parallel implementation

using Futhark. It has started by introducing Futhark-basic, a one-option per thread

implementation in Futhark, created and used as a template to deriveFuthark-�at ,

together with the �attening transformations applied and the method we have used

to validate its correctness. At the end, it compared �attening implementation in

Futhark-�at with the one in CUDA-multi . This concludes the last two algorithm im-

plementations and leads to the methodology and experiments performed in order to

determine the pros and cons of each version and more importantly their performance.
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8
Experimental Methodology

This chapter will introduce the reader to the methodology used to experiment our

work. This includes the data sets we have generated and their di�erence in dis-

tributions, which have helped us �nd key di�erences in the performances of our

implementations. Later in this chapter we present the experimental environment,

which includes the hardware and software we have used and �nally we conclude with

an evaluation of the experiments we have created and the reasons why.

8.1 Data generation

Until this point, all implementations have been tested and validated on examples

from the book (book.in). Doing this helps determine the correctness of the imple-

mentations and gives some hints about the running times of each version, however,

book.in is too small to draw any meaningful conclusions from it. To challenge the

implementations we have created a simple dataset generator, which works with sev-

eral di�erent distributions. This chapter will introduce the reader to the dataset

generator and the sets that were generated to put the implementations to test and

help discover performance di�erences.

8.1.1 Generator Overview

The generator is implemented in C++ and takes 3 arguments as input - total number

of options in the set, a skewness parameter and the data distribution type to be

generated. The inputted number of options is used as a max limit when generating

options. We have generated six essential datasets with216 = 65536 options, which
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is double the total number of available threads on the GPU that was used for this

thesis1 (32768). Additionally, we have created variations for each essential data

distribution with 1000, 10000and 30000options in each (that is 6 � 3 = 18 more

�les), which could be useful to test performance di�erences when �les have di�erent

number of options.

The skewness parameter represents the amount (in percent) of options that will

be skewed (have signi�cantly di�erent height and/or width than the rest of the

options). This parameter is applied only for the skewed distributions, which will be

described later in this chapter. Lastly, the data distribution type is used to specify

the dataset which will be generated. The generator currently works with 6 di�erent

types, which will be described next in this section. Plots and statistics to show the

data distributions are available in Appendix 11. Note that all data distribution plots

consist of a scatter plot where each dot represents an option, and histogram plots next

to their corresponding axis, indicating on the data distribution. We have additionally

included statistics for both the widths and the heights of di�erent options in the �le.

8.1.2 Uniform

The uniform data distribution consists of the same option replicated multiple times.

Each entry in this set has the same height and the same width as the others. All

widths in the newly generated set are equal to 47 and all heights to 109. As this set

is uniformly distributed, all other statistics such as variance, std, skewness are 0 for

both widths and heights. The data distribution and statistics about it are shown on

�g. 8.1, where it can be seen that a dot is formed in the center of the plot. While

pricing the same option this many times is not practically/�nancially useful, there is

a possibility that many real-life inputs will have a uniform distribution, where both

their widths and heights will have close values. In such a case, the dots on the plot

will be separated, but will still remain close to the center. This suggests that in these

distributions, pricing individual options will also take similar times. In our generated

set, each option should be priced in exactly the same amount of time. Furthermore,

1Hardware will be described later in section 8.2
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since there is no di�erence in the heights and the widths, it is not expected that

pricing this data distribution in parallel will bene�t from any sorting or padding,

which should be an interesting experiment.

Figure 8.1: Illustration of the uniformly distributed generated �le

8.1.3 Random

The random data distribution (see �g. 8.2) consists of options with both uniformly

distributed random widths and uniformly distributed random heights. This dataset is

interesting, as it presents a wide variety of option sizes. Both padding and sorting can

bene�t the processing of such a data distribution, hence it can help answer questions

concerned with the various optimization techniques that can possibly improve the

performance of the algorithm.
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Figure 8.2: Illustration of the randomly distributed generated �le

8.1.4 Random with Constant Height/Width

The following two data distributions (see Appendix 11 for plots and details) have

similar structures as the random one described above, however, one of their parame-

ters is being held in place (kept constant). In the case of constant height, the width

is uniformly randomly distributed, while the height remains the same throughout all

options. The other case is vice verse, where the width remains the same, while the

height is randomly distributed. It will be interesting to experiment whether having a

constant width or height bene�ts the performance of any implementation. It should

also be interesting to see if sorting and padding can bene�t the performance.
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8.1.5 Skewed

This data distribution introduces data skewness, where a small percent of all options

is signi�cantly di�erent than the rest. As it can be seen on �g. 8.3, the majority of

the data has widths up to approx. 100 and heights up to approx. 400. Several options

with much larger heights and widths stand out with a larger range for both widths

and heights. This data distribution can also often occur in real life situations, where

several data entries signi�cantly deviate from the rest. This introduces problems

with memory padding in some of the implementations, but can bene�t from sorting

both along the height and along the width. It will be interesting to experiment with

the behaviour ofCUDA-multi on similar datasets where the majority of options have

small widths, hence allowing to pack and process more options in parallel.

Figure 8.3: Illustration of the skewed generated �le
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8.1.6 Skewed with Constant Height/Width

The last two data distributions (see Appendix 11 for plots and details) introduce

similar concepts as the skewed dataset. Similarly, the majority of the data has a

relatively small uniform random distribution on both axes. The di�erence comes in

the skewed part, where either the height or the width are constant, with a much

larger values than the rest of the set. he free parameter (the one that is not held

constant) in these cases has the same distribution as the rest of the options. These

two sets can show interesting information about the dominance of either widths or

heights in a dataset, and help determine whether any of the implementations perform

better on widths or on heights. It should also be interesting to observe the runtime

when sorting and padding are used on each of the di�erent axes.

8.2 Experimental Environment

Hardware In order to test our code, we have used the GPU cluster at DIKU2.

It is composed of 5 servers with multicore CPUs and 2 GPUs per machine. We have

only used four of the machines (GPU01-04) each with 2 xnVidia GeForce GTX 780

GPUs. The complete hardware speci�cation for each of the 4 GPUs is described

below:

� Case: 1x Supermicro SYS-7047GR-TPRF, 4U/Tower barebone LGA2011,

2x1620W PSU, 8x3.5" htswp trays

� CPU : 2x Intel Xeon E5-2650v2, 8-core CPU, 2.6GHz, 20MB cache, 8GT/s

QPI

� RAM : 8x Samsung 16GB DDR3(128GB total) 1866MHz Reg. ECC server

module

� GPU : 2x nVidia GeForce GTX 780 Ti, 3072MB, 384 bit GDDR5, PCI-E 3.0

16x, 15 streaming multiprocessors with 2880 CUDA cores (single precision)

2Find more information on https://di.ku.dk/it/documentation/gpu/
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and 960 CUDA cores (double precision) and compute capability 3.5

� SSD: 1xIntel S3500 serie 240GB SATA

� HDD : 1x Seagate Constellation ES.3 4TB 7200RPM SATA 6Gb/s 128MB

cache 3,5"

The GTX 700 series were �rst released in 2013 and GPU technology has noticeably

improved since. Despite that, both CUDA and Futhark provide portability, allowing

to easily switch hardware, or scale the solution, allowing to run the code on even

more modern hardware, without the need to re-write it.

Software We also turn to software as another aspect of portability. Even

though CUDA and Futhark allow code to be run on many di�erent architectures

and operating systems, it is often a good idea to align compiler versions on di�erent

systems. All experiments described in chapter 9 have been run onRed Hat En-

terprise Linux Server 7.5 (Maipo) with a Linux 3.10.0-862.6.3.el7.x86_64

kernel. All CUDA programs have been compiled byCuda compilation tools, re-

lease 9.2, V9.2.148 using C++11and all Futhark programs by theFuthark 0.6.0

compiler. Note that the use of older versions of both may result in compile errors, as

we have used modern language features introduced in the newer releases. The same

applies for newer compiler versions, since we cannot guarantee that neither Nvidia

products, nor the Futhark language are going to be backward compatible.

Experiments With the large number of combinations between datasets, compu-

tation precision, implementations, optimizations and more, we have created a testing

framework for our CUDA implementations. It runs one combination at a time and

writes the measurements to a �le. For each run we obtain the name of the �le;

the precision; number of registers; the implementation version; the block size; the

sort option; kernel time in microseconds; total time in microseconds and the total

allocated memory in bytes. Futhark implementations are tested using the built-in

futhark-benchtool.
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Evaluation Throughout all experiments, we have tested for multiple perfor-

mance factors:

� Using both �oat and double precision. Although we do not expect that

computing doubles will perform better than �oats, it has been interesting to

observe how the algorithms perform on di�erent levels of precision.

� To determine the highest performing implementation, we evaluate therun-

times of all approaches. For simplicity, we align our CUDA �ndings with

futhark-bench's measurement strategy - excluding input reading, device con-

text initialization, copying of input and output to/from the device and writing

the output. Pre-computations of the data, such as sorting and index compu-

tations/padding are still included in our results. It has been interesting to

observe the speed-ups achieved when di�erent variations of sorting were ap-

plied, when di�erent types of padding were applied and when di�erent block

sizes were used3. All runtimes are in seconds, as we have found that measure

to be best visually representative on the plots.

� Another important measurement we have considered wasmemory . We have

created multiple versions both forCUDA-option and CUDA-multi , where mem-

ory was optimized, thus it has been interesting to observe the impacts of each

version. Memory has been measured in megabytes (MB).

Summary

This chapter provided an overview of the methodology used in order to set up the

experiment environment. This has included the datasets we have generated in order

to put the implementations to a test, the hardware and software used to run them

and a brief description of what exactly we have put to the test in order to measure

performance. The following chapter will introduce the actual experiments and elab-

3Note that CUDA-multi is always expected to perform better with the largest block size available
- namely 1024, hence we have tested di�erent block-sizes only forCUDA-option .
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orate on the results we have obtained, in order to determine di�erent performance

characteristics and obtain an empirical validation for answering the thesis questions.
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Experimental Results

This chapter will introduce the actual experiments we have conducted in this project.

It will �rst discuss the performance bene�ts of the di�erent optimization techniques

we have used and generalize with the speed-ups achieved over the sequential set-up

we have discussed in chapter 4. The chapter will conclude with a summary of our

�ndings aiming to answer the thesis questions stated in the beginning of the report.

As mentioned in the previous chapter, we ran our 5 programs on 7 datasets with

many combinations of parameters such as version, sorting and block size, which gave

us a large number of results (3542 in total). Therefore, it is important to show

only the results that matter the most, and we decided to make plots that show the

best runtimes and average memory we measured for the combination shown on the

plot. Even though we have created a variety of plots to support our �ndings, in this

chapter we will only show the ones which can clearly show the di�erences we discuss.

Since we have distributions of di�erent nature, we expect to see opposing di�erences

for some optimizations. Therefore, to underline the trade-o�s and the importance of

each optimization, we have tried to show on plots the two datasets that have shown

the most contrast in each experiment. Nevertheless, all results can be found in tables

under the two chosen plots and all plots can be found in Appendices B, C and D.
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9.1 CUDA-option Performance

9.1.1 Coalescing

As it can be seen on �g. 9.2, coalescing (versions 2, 3 and 4 all provide memory

coalescing) has proven to be a successful technique forCUDA-option. The highest

performance was achieved on the random dataset with constant height, where we

have achieved as much speed-up as ~10� on �oats and ~2� on doubles. The least

impact by coalescing has shown to be on the skewed datasets, even though still ~2�

faster.
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Table 9.1: Float runtime for all 7 datasets (in seconds)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 0.347 12.64 1.037 2.05 2.498 0.973 0.879
2 0.055 2.125 0.11 0.299 1.106 0.248 0.234
3 0.054 2.043 0.108 0.294 1.085 0.243 0.227
4 0.055 1.993 0.108 0.293 1.085 0.243 0.227

Table 9.2: Double runtime for all 7 datasets (in seconds)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 0.493 15.329 1.273 3.026 3.475 1.079 1.101
2 0.248 8.355 0.545 1.497 2.105 0.66 0.632
3 0.249 8.427 0.547 1.502 2.112 0.661 0.636
4 0.252 8.409 0.546 1.504 2.127 0.661 0.642

Figure 9.2: Performance impact of coalescing inCUDA-option (best runtimes)

96



Chapter 9. Experimental Results

9.1.2 Global-level Padding

While the runtime improvements were signi�cant after the coalescing, memory con-

sumption had also increased with the usage of global-level padding in version 2 (up

to ~7� more for both �oats and doubles), in comparison to version 1. This can

be seen on �g. 9.4 showing the memory consumption di�erence between all versions

for datasets 1 - Random and 4 - Skewed. This was obviously unwanted and it was

therefore necessary to try and reduce the memory usage.

9.1.3 Block-level Padding

As described in chapter 5, block-level padding (version 3) is a memory optimization

technique, which attempts to reduce the large memory usage, while preserving coa-

lesced memory access. This version has proven to signi�cantly reduce memory size,

as it can be seen on �g. 9.4, while the performance remained similar. On average,

requiring ~1:4� less memory than version 2 for �oats and ~3� for doubles, but still

~2� more than version 1.

9.1.4 Warp-level Padding

Warp-level padding (version 4) was also described in chapter 5, where arrays were

padded per 32 threads (warp) instead of a block, compared to version 3. On average,

it used ~1:4� less memory than block-level padding, bringing it down to ~1:4�

more memory than no padding (�g. 9.4), while performance remained similar again

(�g. 9.2).
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Table 9.3: Float memory size for all 7 datasets (in MB)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 53.263 283.977 159.031 177.772 81.821 80.399 80.043
2 53.263 558.263 285.263 326.263 558.263 356.263 347.263
3 53.521 405.301 184.502 207.782 156.367 149.116 139.867
4 53.536 354.488 183.127 206.254 115.145 108.296 106.469

Table 9.4: Double memory size for all 7 datasets (in MB)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 105.513 566.925 317.034 354.532 162.588 159.747 159.035
2 105.513 1115.513 569.513 651.513 1115.513 711.513 693.513
3 105.771 809.55 367.724 414.292 311.595 297.848 278.65
4 105.786 707.85 364.956 411.222 228.997 215.484 211.654

Figure 9.4: Memory impact of padding inCUDA-option (average global memory
size)
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9.1.5 Sorting

An important optimization technique which a�ects thread divergence is sorting. We

tested 4 types of sorting:

1. ascending height �rst, width second

2. descending height �rst, width second

3. ascending width �rst, height second

4. descending width �rst, height second

As shown on �g. 9.6, dataset 0 - Uniform data distribution, is negatively a�ected

by it, as we also have to spend a few milliseconds to sort the data and gain no

actual bene�t for doing that. This is expected, since all options in the �le have

the exact same width and height. We expect, however, that sorting similar data

distributions, where the distribution of data is centered around the middle (similar

to �g. 8.1 but not just one point), can lead to a small, insigni�cant speed-up. Hence

the only situation where we found sorting useless was when pricing a large number

of duplicated options, which is impractical.

In contrast, sorting has proven to be quite successful on other datasets. However,

as mentioned in chapter 5, and shown on �g. 9.6, choosing a good sorting strategy can

be data-sensitive. We can see on the plot for dataset 5 - Skewed constant height that

any sorting is better than no sorting at all. Despite that, di�erent sorting options

can produce di�erent speed-ups with up to 20% of margin.

Due to the thread divergence, we risk running large options (e.g. options with

large heights) in the end, which likely results in CUDA waiting on a few threads to

process them, while a lot of other threads are idling. Intuitively, reducing the idle

time for threads can produce signi�cant speed-ups, hence we expect that sorting by

descending should be generally better in most cases. Looking at the additional plots

in Appendix B.3 or tables in �g. 9.6, we can con�rm our observation, as sorting by

both width and height in descending order tends to be faster.
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Additionally, we show that pre-processing (primarily a�ected by sorting) takes a

negligible amount of time in all cases, as seen in �g. 9.7, where the highest average

pre-processing time for doubles takes 12.3 milliseconds when sorting by ascending

width.

Table 9.5: Float runtime for all 7 datasets (in seconds)
sort DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
None 0.054 8.422 1.037 0.644 2.498 0.77 0.706
Height N 0.056 2.554 0.115 0.337 1.181 0.304 0.299
Height H 0.056 1.993 0.108 0.294 1.129 0.25 0.243
Width N 0.056 2.585 0.116 0.337 1.138 0.311 0.285
Width H 0.056 2.069 0.108 0.293 1.085 0.243 0.227

Table 9.6: Double runtime for all 7 datasets (in seconds)
sort DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
None 0.248 26.203 1.273 2.973 9.776 2.886 2.575
Height N 0.254 9.18 0.551 1.551 2.322 0.868 0.862
Height H 0.254 8.355 0.545 1.497 2.162 0.66 0.696
Width N 0.254 10.752 0.55 1.551 2.279 0.975 0.848
Width H 0.254 9.96 0.545 1.497 2.105 0.811 0.632

Figure 9.6: Performance impact of sorting inCUDA-option (best runtimes)
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Table 9.7: Float pre-processing time for all 7 datasets (inmilliseconds )

sort DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
None 1.325 2.947 1.597 1.619 1.69 1.644 1.657
Height N 3.022 5.458 3.376 3.396 3.46 3.436 3.477
Height H 3.039 5.407 3.388 3.403 3.439 3.424 3.483
Width N 3.03 6.131 3.398 3.425 3.458 3.459 3.494
Width H 3.033 5.297 3.375 3.418 3.453 3.441 3.479

Table 9.8: Double pre-processing time for all 7 datasets (inmilliseconds )
sort DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
None 1.283 2.678 1.788 1.87 2.036 1.807 1.795
Height N 7.098 10.664 7.586 7.592 7.629 7.524 7.516
Height H 7.104 9.206 7.601 7.593 7.636 7.516 7.521
Width N 7.21 12.304 7.561 7.703 7.639 7.551 7.524
Width H 7.107 11.987 7.547 7.622 7.632 7.567 7.511

Figure 9.7: Pre-processing cost inCUDA-option (average pre-processing times)

9.1.6 Block Sizes

SinceCUDA-option is concerned with running a single option per thread, the block

size determines the number of options that can be processed in parallel. This was

also described at the end of chapter 5, together with an explanation of the trade-o�s

for choosing di�erent block sizes. The two experiments we have chosen to display in

this section (see �g. 9.9) show that the optimal block-size is also dependent on the

data. Even though the impact of block sizes is not signi�cant (i.e. ~1:5� for �oats

and ~1:2� for doubles), dataset 1 - Random performs best with a block size of 128.

In contrast, dataset 5 - Skewed Constant Height operates best with block size of 512.

Despite that, smaller block sizes prevail to show optimal performance on all other

experiments (as seen in Appendix C.2 or tables in �g. 9.9).
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Table 9.9: Float runtime for all 7 datasets (in seconds)
block DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
32 0.083 2.911 0.176 0.491 1.085 0.252 0.233
64 0.054 2.029 0.108 0.294 1.093 0.249 0.23
128 0.054 1.993 0.108 0.293 1.092 0.243 0.227
256 0.055 2.185 0.11 0.294 1.115 0.244 0.229
512 0.055 2.282 0.112 0.294 1.174 0.256 0.23
1024 0.059 2.347 0.113 0.302 1.56 0.339 0.306

Table 9.10: Double runtime for all 7 datasets (in seconds)
block DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
32 0.257 9.075 0.548 1.517 2.153 0.742 0.696
64 0.248 8.815 0.545 1.5 2.156 0.735 0.702
128 0.248 8.355 0.545 1.497 2.105 0.722 0.682
256 0.259 9.053 0.55 1.514 2.327 0.67 0.632
512 0.267 10.089 0.562 1.544 3.312 0.66 0.722
1024 0.316 9.965 0.613 1.638 5.431 1.025 1.048

Figure 9.9: Performance impact of di�erent block sizes inCUDA-option (best run-
times)
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9.2 CUDA-multi performance

9.2.1 Coalescing

Both version 1 and version 2 ofCUDA-multi use global-level padding to allocate

height-dependent arrays (alphas). Their di�erence comes in the memory coalescing.

Interestingly enough, all experiments we have created to test the performance bene�ts

of coalescing onCUDA-multi have shown no signi�cant improvement. This can be

seen on �g. 9.11. The only reasonable explanation for this is thatCUDA-multi does

not access that many alphas at the same time. For example, inCUDA-option on a

uniform dataset, using a block size of 1024 will make all 1024 threads access alphas at

the same time, which makes it easy to optimize data transfers by coalescing. On the

other hand, in CUDA-multi the number of alphas accessed at the same time depends

primarily on the number of options in the block and their widths. Nevertheless, this

number is going to be much smaller, making optimizations much less signi�cant.
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Table 9.11: Float runtime for all 7 datasets (in seconds)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 0.146 6.797 0.743 1.192 1.138 1.016 0.456
2 0.148 6.895 0.758 1.204 1.135 1.01 0.462
3 0.15 4.841 0.75 0.888 0.45 0.334 0.336

Table 9.12: Double runtime for all 7 datasets (in seconds)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 0.439 12.312 1.367 2.794 1.877 1.638 1.014
2 0.439 12.364 1.374 2.798 1.877 1.635 1.016
3 0.444 10.343 1.388 2.465 1.147 0.91 0.896

Figure 9.11: Performance impact of memory coalescing onCUDA-multi (best run-
times)
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9.2.2 Global-level Padding

As noted in the previous section, both version 1 and 2 use global-level padding and

no memory-optimizing technique has been applied. Hence we do not expect any

memory di�erences between the two. Fig. 9.13 further con�rms our expectations.

9.2.3 Block-level Padding

Similarly to CUDA-option, we can apply block-level padding in an attempt to op-

timize the memory usage of the implementation. We can see on �g. 9.13 that on

the random data distribution we can achieve up to ~2� memory improvement for

both �oats and doubles. Furthermore, on the skewed dataset, we can see memory

improvements up to ~5� for both �oats and doubles. Due to the improved locality of

reference, as mentioned in chapter 6.2, we also expect to see runtime improvements

after this optimization. Indeed, if we look at �g. 9.11 we can see that version 3 per-

forms up to ~3� faster on �oats and ~1:8� on doubles. Furthermore, we can observe

that all skewed datasets are signi�cantly and positively impacted by version 3.

Intuitively, the next step would be to experiment with warp-level padding and

attempt to improve the memory optimization even further. However, since one

option can be computed by multiple warps, this optimization is not available in

CUDA-multi .
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Table 9.13: Float memory size for all 7 datasets (in MB)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 29.781 302.882 29.881 302.781 302.787 302.785 92.787
2 29.781 302.882 29.881 302.781 302.787 302.785 92.787
3 29.8 168.061 30 180.213 60.99 66.086 57.208

Table 9.14: Double memory size for all 7 datasets (in MB)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 58.531 604.632 58.632 604.531 604.537 604.535 184.537
2 58.531 604.632 58.632 604.531 604.537 604.535 184.537
3 58.55 334.966 58.75 359.377 120.943 131.189 113.374

Figure 9.13: Memory impact of global-level paddingCUDA-multi (average global
memory size)
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9.2.4 Sorting

As mentioned at the end of chapter 6, reducing the thread divergence on heights

can be done by sorting by height, while sorting by widths can improve the options

packing. We can see on �g. 9.15, that any sorting gives up to ~1:7� speed-up for �oats

and up to ~1:4� for doubles. The di�erences between sorting options is insigni�cant,

however we can see that sorting by height often results in a slightly better speed-up.

Supplementary plots in Appendix. C.3 and tables in �g. 9.15 further underline this.

As also seen in section 9.1.5, uniform datasets obviously do not bene�t from sort-

ing, but it has been shown that the process of sorting only slightly degrades perfor-

mance.
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Table 9.15: Float runtime for all 7 datasets (in seconds)
sort DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
None 0.146 7.281 0.778 1.551 0.778 0.769 0.6
Height N 0.148 4.847 0.743 0.894 0.452 0.342 0.337
Height H 0.148 4.841 0.743 0.89 0.45 0.334 0.336
Width N 0.148 4.919 0.743 0.893 0.464 0.366 0.344
Width H 0.148 4.933 0.743 0.888 0.462 0.365 0.345

Table 9.16: Double runtime for all 7 datasets (in seconds)
sort DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
None 0.439 13.19 1.428 3.442 1.59 1.484 1.265
Height N 0.444 10.343 1.367 2.474 1.149 0.921 0.897
Height H 0.445 10.367 1.369 2.465 1.147 0.91 0.896
Width N 0.445 10.374 1.367 2.476 1.151 0.94 0.896
Width H 0.444 10.475 1.37 2.466 1.147 0.939 0.899

Figure 9.15: Performance impact of sorting paddingCUDA-multi (best runtimes)
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9.2.5 Block Sizes

The experiments on block sizes (see �g. 9.17) have proven that using block size of

1024 and limiting registers to 32 is always preferable, compared to using block size

of 512 without limiting registers. We can see a speed-up of up to ~1:4� on �oats and

~1:5� on doubles. Bigger block size allows packing more options in one block, while

limiting the number of registers helps to achieve full occupancy on SMs, proving our

performance expectations from chapter 6.2.

Table 9.17: Float runtime for all 7 datasets (in seconds)
block DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
512 0.206 7.603 1.216 1.247 0.631 0.467 0.471
1024 0.146 4.841 0.743 0.888 0.45 0.334 0.336

Table 9.18: Double runtime for all 7 datasets (in seconds)
block DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
512 0.664 20.91 3.146 3.869 1.894 1.444 1.44
1024 0.439 10.343 1.367 2.465 1.147 0.91 0.896

Figure 9.17: Performance impact of block sizes onCUDA-multi (best runtimes)
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9.2.6 Bin Packing

As mentioned in chapter 6, inCUDA-multi , all options are packed sequentially before

invoking the kernel. Ideally, we can optimize this by implementing it in parallel.

Despite that, we show on tables 9.19 and 9.20 that pre-processing of the data has

had insigni�cant impact on the performance, delaying it up to ~7:3 milliseconds on

average. We can also note here that (i) the times shown in the two tables show the

average pre-processing time for each version (hence there may be larger runtimes

than 7:3, but still insigni�cant) and (ii) the runtimes include sorting too, as sorting

can also have an impact on bin packing.

Table 9.19: Float pre-processing time for all 7 datasets (inmilliseconds )

version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 2.734 3.688 3.211 3.251 3.314 3.29 3
2 2.701 3.657 3.268 3.264 3.283 3.255 3.089
3 2.667 3.517 3.381 3.001 3.015 2.885 3.045

Table 9.20: Double pre-processing time for all 7 datasets (inmilliseconds )
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 5.93 7.257 6.627 6.706 6.762 6.675 6.198
2 5.985 7.3 6.603 6.676 6.658 6.702 6.161
3 6.174 6.967 6.659 6.56 6.251 6.363 6.293

Figure 9.18: Pre-processing cost inCUDA-multi (average pre-processing times)
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9.3 Parallel Speed-up

First and foremost, we underline the performance bene�ts that porting code to

GPGPU hardware can provide. Figures 9.19 and 9.20 show speed-up achieved by

all parallel implementations compared to the sequential implementation, for both

single (�oats) and double precision respectively. Even though the sequential code

could be further optimized, it does already provide a useful metric for comparing

datasets with di�erent workloads. As it can be seen,CUDA-option is the principal

winner of this comparison, with speed-ups up to ~529� faster than the sequential

implementation on �oats and up to ~87� faster on doubles.CUDA-multi prevails

on dataset 4 - Skewed with a speed-up of ~161� on �oats and ~54� on doubles.

Here we �nd out that if the data distribution is skewed on both heights and widths,

it is better to exploit both levels of parallelismbecause this allows to further opti-

mize thread divergence. This feature of the dataset can easily be computed using

the skewness statistical measure. Dataset 4 - Skewed has2:40 skewness on heights

and 5:19 on widths (as seen in Appendix A.5), in contrast with other datasets that

have skewness close to zero on heights or widths or both.

Additionally, the experiments we have performed on smaller datasets1 (see �g. 9.21

and 9.22) have exposed thatCUDA-multi outperformsCUDA-option up to ~13� in

runtime when the datasets are small enough. Furthermore we can see that the per-

formance ofCUDA-option and Futhark-basic increases with the number of options,

while CUDA-multi is not a�ected by it. This leads us to believe that there exists a

certain threshold for each data distribution, which can be used to dynamically switch

betweenCUDA-multi and CUDA-option for optimal performance.

1Even more experiments can be seen in Appendix C.4
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Figure 9.19: Comparisons of parallel speed-ups over sequential implementation using
single precision. CUDA-option is faster on all datasets except 4 - Skewed, where
CUDA-multi is faster.
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